Intracellular Voltage-Sensitive Dyes for Studying Dendritic Excitability and Synaptic Integration

  • Corey D. Acker
  • Mandakini B. Singh
  • Srdjan D. AnticEmail author
Part of the Neuromethods book series (NM, volume 113)


Intracellular voltage-sensitive dyes are used to monitor membrane potential changes from neuronal compartments not readily accessible to glass electrodes, such as basal dendritic segments more than 140 μm away from the cell body. Optical imaging is uniquely suitable to reveal voltage transients occurring simultaneously in two or more dendritic branches, or in two or more locations along the same dendritic branch (simultaneous multi-site recordings). Voltage-sensitive dye recordings can be combined with bath application of drugs that block membrane conductances as well as with focal application of neurotransmitters. The results of dendritic voltage-sensitive dye measurements are naturally incorporated into computational models of neurons with complex dendritic trees. The number of model constraints is notably heightened by a multi-site approach. An interaction between multi-site voltage-sensitive dye recording (wet experiment) and multicompartmental modeling (dry experiment) constitutes one of the most insightful combinations in quantitative neurobiology. This chapter discloses disadvantages associated with voltage-sensitive dyes. It brings useful information for deciding whether voltage-sensitive dye imaging is an appropriate method for your experimental question, and how to determine if a student is ready to work with intracellular voltage-sensitive dyes. Our chapter describes the most important, previously unpublished, practical issues of loading neurons with voltage-sensitive dyes and obtaining fast optical signals (action potentials) from thin dendritic branches using equipment at half price of a standard confocal microscope.

Key words

Electrochromism Chromophores Hemicyanine Styryl dyes Action potential Dendritic spike Backpropagation Plateau potential Fluorescence and membrane potential 



We are grateful to Leslie Loew for comments. Supported by institutional Health Center Research Advisory Council (HCRAC) grant and NIH U01 grant to SDA.


  1. 1.
    Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367(6458):69–72CrossRefPubMedGoogle Scholar
  2. 2.
    Korngreen A, Sakmann B (2000) Voltage-gated K+ channels in layer 5 neocortical pyramidal neurones from young rats: subtypes and gradients. J Physiol 3:621–639CrossRefGoogle Scholar
  3. 3.
    Miyakawa H, Ross WN, Jaffe D et al (1992) Synaptically activated increases in Ca2+ concentration in hippocampal CA1 pyramidal cells are primarily due to voltage-gated Ca2+ channels. Neuron 9(6):1163–1173CrossRefPubMedGoogle Scholar
  4. 4.
    Schiller J, Helmchen F, Sakmann B (1995) Spatial profile of dendritic calcium transients evoked by action potentials in rat neocortical pyramidal neurones. J Physiol 487(Pt 3):583–600CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Antic S, Zecevic D (1995) Optical signals from neurons with internally applied voltage-sensitive dyes. J Neurosci 15(2):1392–1405PubMedGoogle Scholar
  6. 6.
    Antic S, Major G, Zecevic D (1999) Fast optical recordings of membrane potential changes from dendrites of pyramidal neurons. J Neurophysiol 82(3):1615–1621PubMedGoogle Scholar
  7. 7.
    Nevian T, Larkum ME, Polsky A et al (2007) Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nat Neurosci 10(2):206–214CrossRefPubMedGoogle Scholar
  8. 8.
    Antic SD (2003) Action potentials in basal and oblique dendrites of rat neocortical pyramidal neurons. J Physiol 550(1):35–50CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Acker CD, Antic SD (2009) Quantitative assessment of the distributions of membrane conductances involved in action potential backpropagation along basal dendrites. J Neurophysiol 101(3):1524–1541CrossRefPubMedGoogle Scholar
  10. 10.
    Milojkovic BA, Radojicic MS, Antic SD (2005) A strict correlation between dendritic and somatic plateau depolarizations in the rat prefrontal cortex pyramidal neurons. J Neurosci 25(15):3940–3951CrossRefPubMedGoogle Scholar
  11. 11.
    Milojkovic BA, Radojicic MS, Goldman-Rakic PS et al (2004) Burst generation in rat pyramidal neurones by regenerative potentials elicited in a restricted part of the basilar dendritic tree. J Physiol 558(Pt 1):193–211CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Milojkovic BA, Zhou WL, Antic SD (2007) Voltage and calcium transients in basal dendrites of the rat prefrontal cortex. J Physiol 585(2):447–468CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Djurisic M, Antic S, Chen WR et al (2004) Voltage imaging from dendrites of mitral cells: EPSP attenuation and spike trigger zones. J Neurosci 24(30):6703–6714CrossRefPubMedGoogle Scholar
  14. 14.
    Canepari M, Willadt S, Zecevic D et al (2010) Imaging inhibitory synaptic potentials using voltage sensitive dyes. Biophys J 98(9):2032–2040CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Willadt S, Nenniger M, Vogt KE (2013) Hippocampal feedforward inhibition focuses excitatory synaptic signals into distinct dendritic compartments. PLoS One 8(11):e80984CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Canepari M, Popovic M, Vogt K et al (2010) Imaging submillisecond membrane potential changes from individual regions of single axons, dendrites and spines. In: Canepari M, Zecevic D (eds) Membrane potential imaging in the nervous system: methods and applications. Springer Science + Business Media, LLC., New York, NYGoogle Scholar
  17. 17.
    Yan P, Acker CD, Zhou WL et al (2012) Palette of fluorinated voltage-sensitive hemicyanine dyes. Proc Natl Acad Sci U S A 109(50):20443–20448CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rowan MJ, Tranquil E, Christie JM (2014) Distinct Kv channel subtypes contribute to differences in spike signaling properties in the axon initial segment and presynaptic boutons of cerebellar interneurons. J Neurosci 34(19):6611–6623CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Cohen LB, Salzberg BM, Grinvald A (1978) Optical methods for monitoring neuron activity. Annu Rev Neurosci 1:171–182CrossRefPubMedGoogle Scholar
  20. 20.
    Akemann W, Mutoh H, Perron A et al (2010) Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins. Nat Methods 7(8):643–649CrossRefPubMedGoogle Scholar
  21. 21.
    Baker BJ, Jin L, Han Z et al (2012) Genetically encoded fluorescent voltage sensors using the voltage-sensing domain of Nematostella and Danio phosphatases exhibit fast kinetics. J Neurosci Methods 208(2):190–196CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhou WL, Yan P, Wuskell JP et al (2008) Dynamics of action potential backpropagation in basal dendrites of prefrontal cortical pyramidal neurons. Eur J Neurosci 27(4):1–14CrossRefGoogle Scholar
  23. 23.
    Aseyev N, Roshchin M, Ierusalimsky VN et al (2012) Biolistic delivery of voltage-sensitive dyes for fast recording of membrane potential changes in individual neurons in rat brain slices. J Neurosci Methods 212(1):17–27CrossRefPubMedGoogle Scholar
  24. 24.
    Wu JY, Lam YW, Falk CX et al (1998) Voltage-sensitive dyes for monitoring multineuronal activity in the intact central nervous system. Histochem J 30(3):169–187CrossRefPubMedGoogle Scholar
  25. 25.
    Loew LM, Scully S, Simpson L et al (1979) Evidence for a charge-shift electrochromic mechanism in a probe of membrane potential. Nature 281(5731):497–499CrossRefPubMedGoogle Scholar
  26. 26.
    Fink AE, Bender KJ, Trussell LO et al (2012) Two-photon compatibility and single-voxel, single-trial detection of subthreshold neuronal activity by a two-component optical voltage sensor. PLoS One 7(8):e41434CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Miller EW, Lin JY, Frady EP et al (2012) Optically monitoring voltage in neurons by photo-induced electron transfer through molecular wires. Proc Natl Acad Sci U S A 109(6):2114–2119CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Popovic MA, Gao X, Carnevale NT et al (2014) Cortical dendritic spine heads are not electrically isolated by the spine neck from membrane potential signals in parent dendrites. Cereb Cortex 24(2):385–395CrossRefPubMedGoogle Scholar
  29. 29.
    Acker CD, Yan P, Loew LM (2011) Single-voxel recording of voltage transients in dendritic spines. Biophys J 101(2):L11–L13CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kampa BM, Stuart GJ (2006) Calcium spikes in basal dendrites of layer 5 pyramidal neurons during action potential bursts. J Neurosci 26(28):7424–7432CrossRefPubMedGoogle Scholar
  31. 31.
    Holthoff KP, Zecevic DP, Konnerth A (2010) Rapid time-course of action potentials in spines and remote dendrites of mouse visual cortex neurons. J Physiol 588:1085CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Acker CD, Loew LM (2013) Characterization of voltage-sensitive dyes in living cells using two-photon excitation. Methods Mol Biol 995:147–160CrossRefPubMedGoogle Scholar
  33. 33.
    Zhou WL, Antic SD (2012) Rapid dopaminergic and GABAergic modulation of calcium and voltage transients in dendrites of prefrontal cortex pyramidal neurons. J Physiol 590(Pt 16):3891–3911CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Milojkovic BA, Wuskell JP, Loew LM et al (2005) Initiation of sodium spikelets in basal dendrites of neocortical pyramidal neurons. J Membr Biol 208(2):155–169CrossRefPubMedGoogle Scholar
  35. 35.
    Keren N, Peled N, Korngreen A (2005) Constraining compartmental models using multiple voltage recordings and genetic algorithms. J Neurophysiol 94(6):3730–3742CrossRefPubMedGoogle Scholar
  36. 36.
    Meyer E, Muller CO, Fromherz P (1997) Cable properties of dendrites in hippocampal neurons of the rat mapped by a voltage-sensitive dye. Eur J Neurosci 9(4):778–785CrossRefPubMedGoogle Scholar
  37. 37.
    Prinz AA, Fromherz P (2003) Effect of neuritic cables on conductance estimates for remote electrical synapses. J Neurophysiol 89(4):2215–2224CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Corey D. Acker
    • 1
  • Mandakini B. Singh
    • 2
  • Srdjan D. Antic
    • 2
    Email author
  1. 1.R. D. Berlin Center for Cell Analysis and ModelingUniversity of Connecticut Health CenterFarmingtonUSA
  2. 2.Department of Neuroscience, Institute for Systems GenomicsUniversity of Connecticut Health CenterFarmingtonUSA

Personalised recommendations