In Vivo Whole-Cell Recordings

  • Bojana Kokinovic
  • Stylianos Papaioannou
  • Paolo MediniEmail author
Part of the Neuromethods book series (NM, volume 113)


The introduction of whole-cell, patch clamp recordings in vivo has allowed measuring the synaptic (excitatory and inhibitory) inputs and the spike output from molecularly or anatomically identified neurons. Combining this technique with two-photon microscopy also allows to optically target such recordings to the different subtypes of inhibitory cells (e.g., soma- and dendrite targeting), as well as to measure dendritic integration of synaptic inputs in vivo. Here we summarize the potentialities and describe the critical steps to successfully apply such an informative technique to the study of the physiology and plasticity of brain microcircuits in the living, intact brain.

Key words

In vivo whole cell Patch clamp Brain microcircuits Two-photon microscopy Synaptic physiology 


  1. 1.
    Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260(5554):799–802CrossRefPubMedGoogle Scholar
  2. 2.
    Sakmann B (2006) Patch pipettes are more useful than initially thought: simultaneous pre- and postsynaptic recording from mammalian CNS synapses in vitro and in vivo. Pflugers Arch 453(3):249–259CrossRefPubMedGoogle Scholar
  3. 3.
    Feldmeyer D, Sakmann B (2000) Synaptic efficacy and reliability of excitatory connections between the principal neurones of the input (layer 4) and output layer (layer 5) of the neocortex. J Physiol 525(Pt 1):31–39CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Margrie TW, Brecht M, Sakmann B (2002) In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Arch 444(4):491–498. doi: 10.1007/s00424-002-0831-z CrossRefPubMedGoogle Scholar
  5. 5.
    Jia H, Rochefort NL, Chen X, Konnerth A (2010) Dendritic organization of sensory input to cortical neurons in vivo. Nature 464(7293):1307–1312CrossRefPubMedGoogle Scholar
  6. 6.
    Carandini M, Ferster D (2000) Membrane potential and firing rate in cat primary visual cortex. J Neurosci 20(1):470–484PubMedGoogle Scholar
  7. 7.
    Medini P (2011) Layer- and cell-type-specific subthreshold and suprathreshold effects of long-term monocular deprivation in rat visual cortex. J Neurosci 31(47):17134–17148CrossRefPubMedGoogle Scholar
  8. 8.
    Priebe NJ, Mechler F, Carandini M, Ferster D (2004) The contribution of spike threshold to the dichotomy of cortical simple and complex cells. Nat Neurosci 7(10):1113–1122CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Carandini M (2004) Amplification of trial-to-trial response variability by neurons in visual cortex. PLoS Biol 2(9):E264CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Medini P (2011) Cell-type-specific sub- and suprathreshold receptive fields of layer 4 and layer 2/3 pyramids in rat primary visual cortex. Neuroscience 190:112–126CrossRefPubMedGoogle Scholar
  11. 11.
    Smith SL, Smith IT, Branco T, Hausser M (2013) Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo. Nature 503(7474):115–120CrossRefPubMedGoogle Scholar
  12. 12.
    Brecht M, Sakmann B (2002) Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex. J Physiol 543(Pt 1):49–70CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Anderson JS, Carandini M, Ferster D (2000) Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. J Neurophysiol 84(2):909–926PubMedGoogle Scholar
  14. 14.
    Borg-Graham L, Monier C, Fregnac Y (1996) Voltage-clamp measurement of visually-evoked conductances with whole-cell patch recordings in primary visual cortex. J Physiol Paris 90(3–4):185–188CrossRefPubMedGoogle Scholar
  15. 15.
    Monier C, Chavane F, Baudot P, Graham LJ, Fregnac Y (2003) Orientation and direction selectivity of synaptic inputs in visual cortical neurons: a diversity of combinations produces spike tuning. Neuron 37(4):663–680CrossRefPubMedGoogle Scholar
  16. 16.
    Monier C, Fournier J, Fregnac Y (2008) In vitro and in vivo measures of evoked excitatory and inhibitory conductance dynamics in sensory cortices. J Neurosci Methods 169(2):323–365CrossRefPubMedGoogle Scholar
  17. 17.
    Iurilli G, Olcese U, Medini P (2013) Preserved excitatory-inhibitory balance of cortical synaptic inputs following deprived eye stimulation after a saturating period of monocular deprivation in rats. PLoS One 8(12):e82044CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Iurilli G, Ghezzi D, Olcese U, Lassi G, Nazzaro C, Tonini R, Tucci V, Benfenati F, Medini P (2012) Sound-driven synaptic inhibition in primary visual cortex. Neuron 73(4):814–828CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Priebe NJ, Ferster D (2005) Direction selectivity of excitation and inhibition in simple cells of the cat primary visual cortex. Neuron 45(1):133–145CrossRefPubMedGoogle Scholar
  20. 20.
    Wehr M, Zador AM (2003) Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426(6965):442–446CrossRefPubMedGoogle Scholar
  21. 21.
    Ma WP, Li YT, Tao HW (2013) Downregulation of cortical inhibition mediates ocular dominance plasticity during the critical period. J Neurosci 33(27):11276–11280CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gonchar Y, Wang Q, Burkhalter A (2007) Multiple distinct subtypes of GABAergic neurons in mouse visual cortex identified by triple immunostaining. Front Neuroanat 1:3PubMedGoogle Scholar
  23. 23.
    Gonchar Y, Burkhalter A (1997) Three distinct families of GABAergic neurons in rat visual cortex. Cereb Cortex 7(4):347–358CrossRefPubMedGoogle Scholar
  24. 24.
    Margrie TW, Meyer AH, Caputi A, Monyer H, Hasan MT, Schaefer AT, Denk W, Brecht M (2003) Targeted whole-cell recordings in the mammalian brain in vivo. Neuron 39(6):911–918CrossRefPubMedGoogle Scholar
  25. 25.
    Gentet LJ, Avermann M, Matyas F, Staiger JF, Petersen CC (2010) Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice. Neuron 65(3):422–435CrossRefPubMedGoogle Scholar
  26. 26.
    Gentet LJ, Kremer Y, Taniguchi H, Huang ZJ, Staiger JF, Petersen CC (2012) Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex. Nat Neurosci 15(4):607–612CrossRefPubMedGoogle Scholar
  27. 27.
    Runyan CA, Schummers J, Van Wart A, Kuhlman SJ, Wilson NR, Huang ZJ, Sur M (2010) Response features of parvalbumin-expressing interneurons suggest precise roles for subtypes of inhibition in visual cortex. Neuron 67(5):847–857CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kuhlman SJ, Tring E, Trachtenberg JT (2011) Fast-spiking interneurons have an initial orientation bias that is lost with vision. Nat Neurosci 14(9):1121–1123CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kerlin AM, Andermann ML, Berezovskii VK, Reid RC (2010) Broadly tuned response properties of diverse inhibitory neuron subtypes in mouse visual cortex. Neuron 67(5):858–871CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Olcese U, Iurilli G, Medini P (2013) Cellular and synaptic architecture of multisensory integration in the mouse neocortex. Neuron 79(3):579–593CrossRefPubMedGoogle Scholar
  31. 31.
    Madisen L, Mao T, Koch H, Zhuo JM, Berenyi A, Fujisawa S, Hsu YW, Garcia AJ 3rd, Gu X, Zanella S, Kidney J, Gu H, Mao Y, Hooks BM, Boyden ES, Buzsaki G, Ramirez JM, Jones AR, Svoboda K, Han X, Turner EE, Zeng H (2012) A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 15(5):793–802CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Moore AK, Wehr M (2013) Parvalbumin-expressing inhibitory interneurons in auditory cortex are well-tuned for frequency. J Neurosci 33(34):13713–13723CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Katz Y, Yizhar O, Staiger J, Lampl I (2013) Optopatcher – an electrode holder for simultaneous intracellular patch-clamp recording and optical manipulation. J Neurosci Methods 214(1):113–117CrossRefPubMedGoogle Scholar
  34. 34.
    Chen X, Leischner U, Rochefort NL, Nelken I, Konnerth A (2011) Functional mapping of single spines in cortical neurons in vivo. Nature 475(7357):501–505CrossRefPubMedGoogle Scholar
  35. 35.
    Lavzin M, Rapoport S, Polsky A, Garion L, Schiller J (2012) Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo. Nature 490(7420):397–401CrossRefPubMedGoogle Scholar
  36. 36.
    Rancz EA, Franks KM, Schwarz MK, Pichler B, Schaefer AT, Margrie TW (2011) Transfection via whole-cell recording in vivo: bridging single-cell physiology, genetics and connectomics. Nat Neurosci 14(4):527–532CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Cohen L, Koffman N, Meiri H, Yarom Y, Lampl I, Mizrahi A (2013) Time-lapse electrical recordings of single neurons from the mouse neocortex. Proc Natl Acad Sci U S A 110(14):5665–5670CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Petersen CC, Grinvald A, Sakmann B (2003) Spatiotemporal dynamics of sensory responses in layer 2/3 of rat barrel cortex measured in vivo by voltage-sensitive dye imaging combined with whole-cell voltage recordings and neuron reconstructions. J Neurosci 23(4):1298–1309PubMedGoogle Scholar
  39. 39.
    Bruno RM, Sakmann B (2006) Cortex is driven by weak but synchronously active thalamocortical synapses. Science 312(5780):1622–1627CrossRefPubMedGoogle Scholar
  40. 40.
    Constantinople CM, Bruno RM (2013) Deep cortical layers are activated directly by thalamus. Science 340(6140):1591–1594CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kodandaramaiah SB, Franzesi GT, Chow BY, Boyden ES, Forest CR (2012) Automated whole-cell patch-clamp electrophysiology of neurons in vivo. Nat Methods 9(6):585–587CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Tan AY, Chen Y, Scholl B, Seidemann E, Priebe NJ (2014) Sensory stimulation shifts visual cortex from synchronous to asynchronous states. Nature 509(7499):226–229CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lee AK, Manns ID, Sakmann B, Brecht M (2006) Whole-cell recordings in freely moving rats. Neuron 51(4):399–407CrossRefPubMedGoogle Scholar
  44. 44.
    Spira ME, Hai A (2013) Multi-electrode array technologies for neuroscience and cardiology. Nat Nanotechnol 8(2):83–94CrossRefPubMedGoogle Scholar
  45. 45.
    Pinault D (1996) A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or neurobiotin. J Neurosci Methods 65(2):113–136CrossRefPubMedGoogle Scholar
  46. 46.
    Kitamura K, Judkewitz B, Kano M, Denk W, Hausser M (2008) Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo. Nat Methods 5(1):61–67CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Bojana Kokinovic
    • 1
    • 2
    • 3
  • Stylianos Papaioannou
    • 1
    • 2
  • Paolo Medini
    • 1
    • 2
    Email author
  1. 1.Molecular Biology DepartmentUmeå UniversityUmeåSweden
  2. 2.Integrative Medical Biology (IMB) DepartmentUmeå UniversityUmeåSweden
  3. 3.Italian Institute of TechnologyNeuroscience and Brain Technologies DepartmentGenovaItaly

Personalised recommendations