Skip to main content

Analytical and Fluorimetric Methods for the Characterization of the Transmembrane Transport of Specialized Metabolites in Plants

  • Protocol
  • First Online:
Book cover Biotechnology of Plant Secondary Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1405))

  • 2662 Accesses

Abstract

The characterization of membrane transport of specialized metabolites is essential to understand their metabolic fluxes and to implement metabolic engineering strategies towards the production of increased levels of these valuable metabolites. Here, we describe a set of procedures to isolate tonoplast membranes, to check their purity and functionality, and to characterize their transport properties. Transport is assayed directly by HPLC analysis and quantification of the metabolites actively accumulated in the vesicles, and indirectly using the pH sensitive fluorescent probe ACMA (9-amino-6- chloro-2-methoxyacridine), when a proton antiport is involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shoji T (2014) ATP-binding cassette and multidrug and toxic compound extrusion transporters in plants: a common theme among diverse detoxification mechanisms. Int Rev Cell Mol Biol 309:303–346

    Article  CAS  PubMed  Google Scholar 

  2. Shitan N, Yazaki K (2013) New insights into the transport mechanisms in plant vacuoles. Int Rev Cell Mol Biol 305:383–433

    Article  CAS  PubMed  Google Scholar 

  3. Conde A, Regalado A, Rodrigues D, Costa JM, Blumwald E, Chaves MM, Gerós H (2015) Polyols in grape berry: transport and metabolic adjustments as a physiological strategy for water-deficit stress tolerance in grapevine. J Exp Bot 66:889–906

    Article  CAS  PubMed  Google Scholar 

  4. Carqueijeiro I, Noronha H, Duarte P, Gerós H, Sottomayor M (2013) Vacuolar transport of the medicinal alkaloids from Catharanthus roseus is mediated by a proton driven antiport. Plant Physiol 162:1486–1496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Martins V, Hanana M, Blumwald E, Gerós H (2012) Copper transport and compartmentation in grape cells. Plant Cell Physiol 53:1866–1880

    Article  CAS  PubMed  Google Scholar 

  6. Johansson F, Olbe M, Sommarin M, Larsson C (1995) Brij 58, a polyoxyethylene acyl ether, creates membrane vesicles of uniform sidedness. A new tool to obtain inside-out (cytoplasmic side-out) plasma membrane vesicles. Plant J 7:165–173

    Article  CAS  PubMed  Google Scholar 

  7. Conde A, Diallinas G, Chaumont F, Chaves M, Gerós H (2010) Transporters, channels or simple diffusion? Dogmas, atypical roles and complexity in transport systems. Int J Biochem Cell Biol 42:857–868

    Article  CAS  PubMed  Google Scholar 

  8. Conde C, Agasse A, Glissant D, Tavares R, Gerós H, Delrot S (2006) Pathways of glucose regulation of monosaccharide transport in grape cells. Plant Physiol 141:1563–1577

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  10. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  11. Maeshima M, Yoshida S (1989) Purification and properties of vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean. J Biol Chem 264:20068–20073

    CAS  PubMed  Google Scholar 

  12. Ames BN (1966) Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol 8:115–118

    Article  CAS  Google Scholar 

  13. Façanha AR, de Meis L (1998) Reversibility of H+-ATPase and H+-pyrophosphatase in tonoplast vesicles from maize coleoptiles and seeds. Plant Physiol 116:1487–1495

    Article  Google Scholar 

  14. Queirós F, Fontes N, Silva P, Almeida DPF, Maeshima M, Gerós H, Fidalgo F (2009) Activity of tonoplast proton pumps and Na+/H+ exchange in potato cell cultures is modulated by salt. J Exp Bot 60:1363–1374

    Article  PubMed  Google Scholar 

  15. Vera-Estrella R, Barkla BJ, Higgins VJ, Blumwald E (1994) Plant defense response to fungal pathogens: activation of host-plasma membrane H+-ATPase by elicitor-induced enzyme dephosphorylation. Plant Physiol 104:209–215

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Marinova K, Pourcel L, Weder B, Schwarz M, Barron D, Routaboul JM, Debeaujon I, Klein M (2007) The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin- accumulating cells of the seed coat. Plant Cell 19:2023–2038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Sottomayor M, dePinto MC, Salema R, DiCosmo F, Pedreno MA, Barcelo AR (1996) The vacuolar localization of a basic peroxidase isoenzyme responsible for the synthesis of alpha-3',4'-anhydrovinblastine in Catharanthus roseus (L) G. Don leaves. Plant Cell Environ 19:761–767

    Article  CAS  Google Scholar 

  18. Casadio R (1991) Measurements of transmembrane pH differences of low extents in bacterial chromatophores. A study with the fluorescent probe 9-amino, 6-chloro, 2-methoxyacridine. Eur Biophys J 19:189–201

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by: (1) Fundo Europeu de Desenvolvimento Regional funds through the Operational Competitiveness Programme COMPETE and by National Funds through Fundação para a Ciência e a Tecnologia (FCT) under the projects FCOMP-01-0124-FEDER-037277 (PEst-C/SAU/LA0002/2013) and FCOMP-01-0124-FEDER-019664 (PTDC/BIA-BCM/119718/2010); (2) by the FCT scholarships co-supported by FCT and POPH-QREN (European Social Fund), SFRH/BD/41907/2007 (IC) and SFRH/BD/74257/2010 (HN); (3) by a Postdoctoral fellowship financed by national funds through FCT under the project Incentivo/SAU/LA0002/2014 (VM); (4) by a Scientific Mecenate Grant from Grupo Jerónimo Martins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Sottomayor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Carqueijeiro, I., Martins, V., Noronha, H., Gerós, H., Sottomayor, M. (2016). Analytical and Fluorimetric Methods for the Characterization of the Transmembrane Transport of Specialized Metabolites in Plants. In: Fett-Neto, A. (eds) Biotechnology of Plant Secondary Metabolism. Methods in Molecular Biology, vol 1405. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3393-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3393-8_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3391-4

  • Online ISBN: 978-1-4939-3393-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics