Skip to main content

A Reverse Genetics Approach for the Design of Methyltransferase-Defective Live Attenuated Avian Metapneumovirus Vaccines

  • Protocol
  • First Online:
Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1404))

Abstract

Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis virus, is the causative agent of turkey rhinotracheitis and is associated with swollen head syndrome in chickens. aMPV belongs to the family Paramyxoviridae which includes many important human pathogens such as human respiratory syncytial virus (RSV), human metapneumovirus (hMPV), and human parainfluenza virus type 3 (PIV3). The family also includes highly lethal emerging pathogens such as Nipah virus and Hendra virus, as well as agriculturally important viruses such as Newcastle disease virus (NDV). For many of these viruses, there is no effective vaccine. Here, we describe a reverse genetics approach to develop live attenuated aMPV vaccines by inhibiting the viral mRNA cap methyltransferase. The viral mRNA cap methyltransferase is an excellent target for the attenuation of paramyxoviruses because it plays essential roles in mRNA stability, efficient viral protein translation and innate immunity. We have described in detail the materials and methods used to generate recombinant aMPVs that lack viral mRNA cap methyltransferase activity. We have also provided methods to evaluate the genetic stability, pathogenesis, and immunogenicity of live aMPV vaccine candidates in turkeys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Broor S, Bharaj P (2007) Avian and human metapneumovirus. Ann N Y Acad Sci 1102:66–85

    Article  CAS  Google Scholar 

  2. Easton AJ, Domachowske JB, Rosenberg HF (2004) Animal pneumoviruses: molecular genetics and pathogenesis. Clin Microbiol Rev 17:390–412

    Article  CAS  Google Scholar 

  3. Hafez HM, Hess M, Prusas C, Naylor CJ, Cavanagh D (2000) Presence of avian pneumovirus type A in continental Europe during the 1980s. J Vet Med B Infect Dis Vet Public Health 47:629–633

    Article  CAS  Google Scholar 

  4. Aung YH, Liman M, Neumann U, Rautenschlein S (2008) Reproducibility of swollen sinuses in broilers by experimental infection with avian metapneumovirus subtypes A and B of turkey origin and their comparative pathogenesis. Avian Pathol 37:65–74

    Article  CAS  Google Scholar 

  5. Toquin D, Guionie O, Jestin V, Zwingelstein F, Allee C, Eterradossi N (2006) European and American subgroup C isolates of avian metapneumovirus belong to different genetic lineages. Virus Genes 32:97–103

    Article  CAS  Google Scholar 

  6. Wei L, Zhu S, Yan X, Wang J, Zhang C, Liu S, She R, Hu F, Quan R, Liu J (2013) Avian metapneumovirus subgroup C infection in chickens, China. Emerg Infect Dis 19:1092–1094

    Article  Google Scholar 

  7. Govindarajan D, Buchholz UJ, Samal SK (2006) Recovery of avian metapneumovirus subgroup C from cDNA: cross-recognition of avian and human metapneumovirus support proteins. J Virol 80:5790–5797

    Article  CAS  Google Scholar 

  8. Turpin EA, Stallknecht DE, Slemons RD, Zsak L, Swayne DE (2008) Evidence of avian metapneumovirus subtype C infection of wild birds in Georgia, South Carolina, Arkansas and Ohio, USA. Avian Pathol 37:343–351

    Article  CAS  Google Scholar 

  9. Goyal SM, Chiang SJ, Dar AM, Nagaraja KV, Shaw DP, Halvorson DA, Kapur V (2000) Isolation of avian pneumovirus from an outbreak of respiratory illness in Minnesota turkeys. J Vet Diagn Invest 12:166–168

    Article  CAS  Google Scholar 

  10. Alkhalaf AN, Ward LA, Dearth RN, Saif YM (2002) Pathogenicity, transmissibility, and tissue distribution of avian pneumovirus in turkey poults. Avian Dis 46:650–659

    Article  CAS  Google Scholar 

  11. Padhi A, Poss M (2009) Population dynamics and rates of molecular evolution of a recently emerged paramyxovirus, avian metapneumovirus subtype C. J Virol 83:2015–2019

    Article  CAS  Google Scholar 

  12. Wei Y, Feng K, Yao X, Cai H, Li J, Mirza AM, Iorio RM (2012) Localization of a region in the fusion protein of avian metapneumovirus that modulates cell-cell fusion. J Virol 86:11800–11814

    Article  CAS  Google Scholar 

  13. van den Hoogen BG, de Jong JC, Groen J, Kuiken T et al (2001) A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med 7:719–724

    Article  Google Scholar 

  14. van den Hoogen BG, Herfst S, Sprong L, Cane PA et al (2004) Antigenic and genetic variability of human metapneumoviruses. Emerg Infect Dis 10:658–666

    Article  Google Scholar 

  15. Wei Y, Zhang Y, Cai H, Mirza AM, Iorio RM, Peeples ME, Niewiesk S, Li J (2014) Roles of the putative integrin-binding motif of the human metapneumovirus fusion (f) protein in cell-cell fusion, viral infectivity, and pathogenesis. J Virol 88:4338–4352

    Article  Google Scholar 

  16. Velayudhan BT, Nagaraja KV, Thachil AJ, Shaw DP, Gray GC, Halvorson DA (2006) Human metapneumovirus in turkey poults. Emerg Infect Dis 12:1853–1859

    Article  Google Scholar 

  17. Ganapathy K, Jones RC (2007) Vaccination of chicks with live attenuated subtype B avian metapneumovirus vaccines: protection against challenge and immune responses can be unrelated to vaccine dose. Avian Dis 51:733–737

    Article  Google Scholar 

  18. Naylor CJ, Ling R, Edworthy N, Savage CE, Easton AJ (2007) Avian metapneumovirus SH gene end and G protein mutations influence the level of protection of live-vaccine candidates. J Gen Virol 88(Pt 6):1767–1775

    Article  CAS  Google Scholar 

  19. Patnayak DP, Gulati BR, Sheikh AM, Goyal SM (2003) Cold adapted avian pneumovirus for use as live, attenuated vaccine in turkeys. Vaccine 21:1371–1374

    Article  Google Scholar 

  20. Patnayak DP, Sheikh AM, Gulati BR, Goyal SM (2002) Experimental and field evaluation of a live vaccine against avian pneumovirus. Avian Pathol 31:377–382

    Article  Google Scholar 

  21. Hu H, Roth JP, Estevez CN, Zsak L, Liu B, Yu Q (2011) Generation and evaluation of a recombinant Newcastle disease virus expressing the glycoprotein (G) of avian metapneumovirus subgroup C as a bivalent vaccine in turkeys. Vaccine 29:8624–8633

    Article  CAS  Google Scholar 

  22. Lupini C, Cecchinato M, Ricchizzi E, Naylor CJ, Catelli E (2011) A turkey rhinotracheitis outbreak caused by the environmental spread of a vaccine-derived avian metapneumovirus. Avian Pathol 40:525–530

    Article  Google Scholar 

  23. Velayudhan BT, Noll SL, Thachil AJ, Shaw DP et al (2007) Development of a vaccine-challenge model for avian metapneumovirus subtype C in turkeys. Vaccine 25:1841–1847

    Article  CAS  Google Scholar 

  24. Whelan SP, Barr JN, Wertz GW (2004) Transcription and replication of nonsegmented negative-strand RNA viruses. Curr Top Microbiol Immunol 283:61–119

    CAS  PubMed  Google Scholar 

  25. Sun J, Wei Y, Rauf A, Zhang Y et al (2014) Methyltransferase-defective avian metapneumovirus vaccines provide complete protection against challenge with the homologous Colorado strain and the heterologous Minnesota strain. J Virol 88:12348–12363

    Article  Google Scholar 

  26. Zhang Y, Wei Y, Zhang X, Cai H, Niewiesk S, Li J (2014) Rational design of human metapneumovirus live attenuated vaccine candidates by inhibiting viral mRNA cap methyltransferase. J Virol 88:11411–11429

    Article  Google Scholar 

  27. Li J, Fontaine-Rodriguez EC, Whelan SP (2005) Amino acid residues within conserved domain VI of the vesicular stomatitis virus large polymerase protein essential for mRNA cap methyltransferase activity. J Virol 79:13373–13384

    Article  CAS  Google Scholar 

  28. Li J, Rahmeh A, Morelli M, Whelan SP (2008) A conserved motif in region v of the large polymerase proteins of nonsegmented negative-sense RNA viruses that is essential for mRNA capping. J Virol 82:775–784

    Article  CAS  Google Scholar 

  29. Li J, Wang JT, Whelan SP (2006) A unique strategy for mRNA cap methylation used by vesicular stomatitis virus. Proc Natl Acad Sci U S A 103:8493–8498

    Article  CAS  Google Scholar 

  30. Ma Y, Wei Y, Zhang X, Zhang Y et al (2014) mRNA cap methylation influences pathogenesis of vesicular stomatitis virus in vivo. J Virol 88:2913–2926

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the USDA NIFA Animal Health Program (2010-65119-20602) and the NIH (R01AI090060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianrong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zhang, Y., Sun, J., Wei, Y., Li, J. (2016). A Reverse Genetics Approach for the Design of Methyltransferase-Defective Live Attenuated Avian Metapneumovirus Vaccines. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 1404. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-3389-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3389-1_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-3388-4

  • Online ISBN: 978-1-4939-3389-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics