Skip to main content

Preparation of Multifunctional Liposomes as a Stable Vaccine Delivery-Adjuvant System by Procedure of Emulsification-Lyophilization

  • Protocol
  • First Online:
Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1404))

Abstract

Liposomes have been proven to be useful carriers for vaccine antigens and can be modified as a versatile vaccine adjuvant-delivery system (VADS). To fulfill efficiently both functions of adjuvant and delivery, the liposomes are often modified with different functional molecules, such as lipoidal immunopotentiators, APC (antigen-presenting cell) targeting ligands, steric stabilization polymers, and charged lipids. Also, to overcome the weakness of instability, vaccines are often lyophilized as a dry product. In this chapter the procedure of emulsification-lyophilization (PEL) is introduced as an efficient method for preparing a stable anhydrous precursor to the multifunctional liposomes which bear dual modifications with APC targeting molecule of the mannosylated cholesterol and the adjuvant material of monophosphoryl lipid A. The techniques and procedures for synthesis of APC targeting molecule, i.e., the mannosylated cholesterol, and for characterization of the multifunctional liposomes are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ozawa S, Mirelman A, Stack ML, Walker DG, Levine OS (2012) Cost-effectiveness and economic benefits of vaccines in low- and middle-income countries: a systematic review. Vaccine 31(1):96–108. doi:10.1016/j.vaccine.2012.10.103, S0264-410X(12)01576-9 [pii]

    Article  PubMed  Google Scholar 

  2. Moyle PM, Toth I (2013) Modern subunit vaccines: development, components, and research opportunities. ChemMedChem 8(3):360–376. doi:10.1002/cmdc.201200487

    Article  CAS  PubMed  Google Scholar 

  3. Pham TT, Barratt G, Michel JP, Loiseau PM, Saint-Pierre-Chazalet M (2013) Interactions of antileishmanial drugs with monolayers of lipids used in the development of amphotericin B-miltefosine-loaded nanocochleates. Colloids Surf B Biointerfaces 106:224–233. doi:10.1016/j.colsurfb.2013.01.041

    Article  CAS  PubMed  Google Scholar 

  4. Plotkin SA (2005) Vaccines: past, present and future. Nat Med 11(4 Suppl):S5–S11. doi:10.1038/nm1209, nm1209 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moyle PM, McGeary RP, Blanchfield JT, Toth I (2004) Mucosal immunisation: adjuvants and delivery systems. Curr Drug Deliv 1(4):385–396

    Article  CAS  Google Scholar 

  6. Schijns VE, Lavelle EC (2011) Trends in vaccine adjuvants. Expert Rev Vaccines 10(4):539–550. doi:10.1586/erv.11.21

    Article  CAS  PubMed  Google Scholar 

  7. Gebril A, Alsaadi M, Acevedo R, Mullen AB, Ferro VA (2012) Optimizing efficacy of mucosal vaccines. Expert Rev Vaccines 11(9):1139–1155. doi:10.1586/erv.12.81

    Article  CAS  PubMed  Google Scholar 

  8. O’Hehir RE, Sandrini A, Anderson GP, Rolland JM (2007) Sublingual allergen immunotherapy: immunological mechanisms and prospects for refined vaccine preparation. Curr Med Chem 14(21):2235–2244

    Article  Google Scholar 

  9. Kweon MN (2011) Sublingual mucosa: a new vaccination route for systemic and mucosal immunity. Cytokine 54(1):1–5. doi:10.1016/j.cyto.2010.12.014, S1043-4666(10)00797-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  10. Kim SH, Lee KY, Jang YS (2012) Mucosal immune system and M cell-targeting strategies for oral mucosal vaccination. Immune Netw 12(5):165–175. doi:10.4110/in.2012.12.5.165

    Article  PubMed  PubMed Central  Google Scholar 

  11. Alving CR, Rao M, Steers NJ, Matyas GR, Mayorov AV (2012) Liposomes containing lipid A: an effective, safe, generic adjuvant system for synthetic vaccines. Expert Rev Vaccines 11(6):733–744. doi:10.1586/erv.12.35

    Article  CAS  PubMed  Google Scholar 

  12. Irache JM, Salman HH, Gamazo C, Espuelas S (2008) Mannose-targeted systems for the delivery of therapeutics. Expert Opin Drug Deliv 5(6):703–724. doi:10.1517/17425247.5.6.703

    Article  CAS  PubMed  Google Scholar 

  13. Wang N, Wang T, Zhang M, Chen R, Deng Y (2014) Using procedure of emulsification-lyophilization to form lipid A-incorporating cochleates as an effective oral mucosal vaccine adjuvant-delivery system (VADS). Int J Pharm 468(1–2):39–49. doi:10.1016/j.ijpharm.2014.04.002, S0378-5173(14)00230-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  14. Wang N, Wang T, Zhang M, Chen R, Niu R, Deng Y (2014) Mannose derivative and lipid A dually decorated cationic liposomes as an effective cold chain free oral mucosal vaccine adjuvant-delivery system. Eur J Pharm Biopharm 88:194–206. doi:10.1016/j.ejpb.2014.04.007, S0939-6411(14)00124-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  15. Wang T, Deng Y, Geng Y, Gao Z, Zou J, Wang Z (2006) Preparation of submicron unilamellar liposomes by freeze-drying double emulsions. Biochim Biophys Acta 1758(2):222–231. doi:10.1016/j.bbamem.2006.01.023, S0005-2736(06)00033-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  16. Wang T, Wang N, Jin X, Zhang K, Li T (2009) A novel procedure for preparation of submicron liposomes-lyophilization of oil-in-water emulsions. J Liposome Res 19(3):231–240. doi:10.1080/08982100902788390, 909232172 [pii]

    Article  CAS  PubMed  Google Scholar 

  17. Wang T, Wang N, Song H, Xi X, Wang J, Hao A, Li T (2011) Preparation of an anhydrous reverse micelle delivery system to enhance oral bioavailability and anti-diabetic efficacy of berberine. Eur J Pharm Sci 44(1–2):127–135. doi:10.1016/j.ejps.2011.06.015, S0928-0987(11)00218-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  18. Wang T, Wang N, Sun W, Li T (2011) Preparation of submicron liposomes exhibiting efficient entrapment of drugs by freeze-drying water-in-oil emulsions. Chem Phys Lipids 164(2):151–157. doi:10.1016/j.chemphyslip.2010.12.005, S0009-3084(10)00391-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  19. Lee BY, Cakouros BE, Assi TM, Connor DL, Welling J, Kone S, Djibo A, Wateska AR, Pierre L, Brown ST (2012) The impact of making vaccines thermostable in Niger’s vaccine supply chain. Vaccine 30(38):5637–5643. doi:10.1016/j.vaccine.2012.06.087, S0264-410X(12)00977-2 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ge S, Kojio K, Takahara A, Kajiyama T (1998) Bovine serum albumin adsorption onto immobilized organotrichlorosilane surface: influence of the phase separation on protein adsorption patterns. J Biomater Sci Polym Ed 9(2):131–150

    Article  CAS  Google Scholar 

  21. Haensler J (2010) Liposomal adjuvants: preparation and formulation with antigens. Methods Mol Biol 626:73–90. doi:10.1007/978-1-60761-585-9_6

    Article  CAS  PubMed  Google Scholar 

  22. Ruyra A, Cano-Sarabia M, Garcia-Valtanen P, Yero D, Gibert I, Mackenzie SA, Estepa A, Maspoch D, Roher N (2014) Targeting and stimulation of the zebrafish (Danio rerio) innate immune system with LPS/dsRNA-loaded nanoliposomes. Vaccine 32(31):3955–3962. doi:10.1016/j.vaccine.2014.05.010

    Article  CAS  PubMed  Google Scholar 

  23. Leroux-Roels G, Van Belle P, Vandepapeliere P, Horsmans Y, Janssens M, Carletti I, Garcon N, Wettendorff M, Van Mechelen M (2014) Vaccine adjuvant systems containing monophosphoryl lipid A and QS-21 induce strong humoral and cellular immune responses against hepatitis B surface antigen which persist for at least 4 years after vaccination. doi:10.1016/j.vaccine.2014.10.078

    Article  CAS  Google Scholar 

  24. Jain V, Vyas SP, Kohli DV (2009) Well-defined and potent liposomal hepatitis B vaccines adjuvanted with lipophilic MDP derivatives. Nanomedicine 5(3):334–344. doi:10.1016/j.nano.2008.12.004

    Article  CAS  PubMed  Google Scholar 

  25. Foged C, Arigita C, Sundblad A, Jiskoot W, Storm G, Frokjaer S (2004) Interaction of dendritic cells with antigen-containing liposomes: effect of bilayer composition. Vaccine 22(15–16):1903–1913. doi:10.1016/j.vaccine.2003.11.008

    Article  CAS  PubMed  Google Scholar 

  26. Stimac A, Segota S, Dutour Sikiric M, Ribic R, Frkanec L, Svetlicic V, Tomic S, Vranesic B, Frkanec R (2012) Surface modified liposomes by mannosylated conjugates anchored via the adamantyl moiety in the lipid bilayer. Biochim Biophys Acta 1818(9):2252–2259. doi:10.1016/j.bbamem.2012.04.002

    Article  CAS  PubMed  Google Scholar 

  27. Perouzel E, Jorgensen MR, Keller M, Miller AD (2003) Synthesis and formulation of neoglycolipids for the functionalization of liposomes and lipoplexes.Bioconjug Chem 14(5):884-898. doi:10.1021/bc034068q

    Article  CAS  Google Scholar 

  28. Carrion C, Domingo JC, de Madariaga MA (2001) Preparation of long-circulating immunoliposomes using PEG-cholesterol conjugates: effect of the spacer arm between PEG and cholesterol on liposomal characteristics. Chem Phys Lipids 113(1–2):97–110, S0009308401001785 [pii]

    Article  CAS  Google Scholar 

  29. Muthiah M, Vu-Quang H, Kim YK, Rhee JH, Kang SH, Jun SY, Choi YJ, Jeong YY, Cho CS, Park IK (2013) Mannose-poly(ethylene glycol)-linked SPION targeted to antigen presenting cells for magnetic resonance imaging on lymph node. Carbohydr Polym 92(2):1586–1595. doi:10.1016/j.carbpol.2012.11.011, S0144-8617(12)01116-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  30. Harris JR (1999) Negative staining of thinly spread biological particulates. Methods Mol Biol 117:13–30. doi:10.1385/1-59259-201-5:13, 1-59259-201-5-13 [pii]

    Article  CAS  PubMed  Google Scholar 

  31. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254, S0003269776699996 [pii]

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge that this work was financially supported by the Faculty S&R Project Startup Fund of Hefei University of Technology (HUT), and also by the Fundamental Research Funds for the Central Universities for HUT.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Wang or Ting Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wang, N., Wang, T. (2016). Preparation of Multifunctional Liposomes as a Stable Vaccine Delivery-Adjuvant System by Procedure of Emulsification-Lyophilization. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 1404. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-3389-1_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3389-1_41

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-3388-4

  • Online ISBN: 978-1-4939-3389-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics