Skip to main content

Oral Vaccine Development by Molecular Display Methods Using Microbial Cells

  • Protocol
  • First Online:
Book cover Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1404))

Abstract

Oral vaccines are easier to administer than injectable vaccines. To induce an adequate immune response using vaccines, antigenic proteins are usually combined with adjuvant materials. This chapter presents methodologies for the design of oral vaccines using molecular display technology. In molecular display technology, antigenic proteins are displayed on a microbial cell surface with adjuvant ability. This technology would provide a quite convenient process to produce oral vaccines when the DNA sequence of an efficient antigenic protein is available. As an example, oral vaccines against candidiasis were introduced using two different molecular display systems with Saccharomyces cerevisiae and Lactobacillus casei.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kwon KC, Verma D, Singh ND, Herzog R, Daniell H (2013) Oral delivery of human biopharmaceuticals, autoantigens and vaccine antigens bioencapsulated in plant cells. Adv Drug Deliv Rev 65:782–799

    Article  CAS  Google Scholar 

  2. Tsiang H (1998) Rabies vaccines: a review of progress towards improved efficacy and safety. BioDrugs 10:317–328

    Article  CAS  Google Scholar 

  3. Shibasaki S, Aoki W, Nomura T, Miyoshi A, Tafuku S, Sewaki T, Ueda M (2013) An oral vaccine against candidiasis generated by a yeast molecular display system. Pathog Dis 69:262–268

    Article  CAS  Google Scholar 

  4. Shibasaki S, Aoki W, Ueda M (2013) Biochemical analysis and application of molecular display technology on Candida albicans for diagnosing and preventing candidiasis. Yakugaku Zasshi 133:1145–1151

    Article  CAS  Google Scholar 

  5. Shibasaki S, Karasaki M, Tafuku S, Aoki W, Sewaki T, Ueda M (2014) Oral immunization against candidiasis using Lactobacillus casei displaying Enolase 1 from Candida albicans. Sci Pharm 82:697–708

    Article  CAS  Google Scholar 

  6. Shibasaki S, Karasaki M, Ueda M (2014) Combining proteomic strategies and molecular display technology for development of vaccines against Candida albicans. J Proteomics Bioinform 7:134–138

    Google Scholar 

  7. Ståhl S, Robert A, Gunneriusson E, Wernerus H, Cano F, Liljeqvist S, Hansson M, Nguyen TN, Samuelson P (2000) Staphylococcal surface display and its applications. Int J Med Microbiol 290:571–577

    Article  Google Scholar 

  8. Narita J, Okano K, Kitao T, Ishida S, Sewaki T, Sung MH, Fukuda H, Kondo A (2006) Display of alpha-amylase on the surface of Lactobacillus casei cells by use of the PgsA anchor protein, and production of lactic acid from starch. Appl Environ Microbiol 72:269–275

    Article  CAS  Google Scholar 

  9. Piard JC, Hautefort I, Fischetti VA, Ehrlich SD, Fons M, Gruss A (1997) Cell wall anchoring of the Streptococcus pyogenes M6 protein in various lactic acid bacteria. J Bacteriol 179:3068–3072

    Article  CAS  Google Scholar 

  10. Shibasaki S, Ueda M (2014) Bioadsorption strategies with yeast molecular display technology. Biocontrol Sci 19:157–164

    Article  CAS  Google Scholar 

  11. Shibasaki S, Maeda H, Ueda M (2009) Molecular display technology using yeast--arming technology. Anal Sci 25:41–49

    Article  CAS  Google Scholar 

  12. Adachi K, Kawana K, Yokoyama T, Fujii T, Tomio A et al (2010) Oral immunization with a Lactobacillus casei vaccine expressing human papillomavirus (HPV) type 16 E7 is an effective strategy to induce mucosal cytotoxic lymphocytes against HPV16 E7. Vaccine 28:2810–2817

    Article  CAS  Google Scholar 

  13. Kondo A, Ueda M (2004) Yeast cell-surface display--applications of molecular display. Appl Microbiol Biotechnol 64:28–40

    Article  CAS  Google Scholar 

  14. Cappellaro C, Hauser K, Mrsa V, Watzele M, Watzele G, Gruber C, Tanner W (1991) Saccharomyces cerevisiae a- and alpha-agglutinin: characterization of their molecular interaction. EMBO J 10:4081–4088

    Article  CAS  Google Scholar 

  15. Berner VK, Sura ME, Hunter KW Jr (2008) Conjugation of protein antigen to microparticulate beta-glucan from Saccharomyces cerevisiae: a new adjuvant for intradermal and oral immunizations. Appl Microbiol Biotechnol 80:1053–1061

    Article  CAS  Google Scholar 

  16. Pouwels PH, Leer RJ, Shaw M, Heijne den Bak-Glashouwer MJ et al (1998) Lactic acid bacteria as antigen delivery vehicles for oral immunization purposes. Int J Food Microbiol 41:155–167

    Article  CAS  Google Scholar 

  17. Turner MS, Giffard PM (1999) Expression of Chlamydia psittaci- and human immunodeficiency virus-derived antigens on the cell surface of Lactobacillus fermentum BR11 as fusions to BspA. Infect Immun 67:5486–5489

    Article  CAS  Google Scholar 

  18. TurnerMS HLM, Walsh T, Giffard PM (2003) Peptide surface display and secretion using two LPXTG-containing surface proteins from Lactobacillus fermentum BR11. Appl Environ Microbiol 69:5855–5863

    Article  Google Scholar 

  19. Mazmanian SK, Ton-That H, Schneewind O (2001) Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus. Mol Microbiol 40:1049–1057

    Article  CAS  Google Scholar 

  20. Ashiuchi M, Misono H (2002) Biochemistry and molecular genetics of poly-γ-glutamate synthesis. Appl Microbiol Biotechnol 59:9–14

    Article  CAS  Google Scholar 

  21. Leenhouts K, Buist G, Kok J (1999) Anchoring of proteins to lactic acid bacteria. Antonie Van Leeuwenhoek 76:367–376

    Article  CAS  Google Scholar 

  22. Pfaller MA, Diekema DJ (2007) Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20:133–163

    Article  CAS  Google Scholar 

  23. Rodloff C, Koch D, Schaumann R (2011) Epidemiology and antifungal resistance in invasive candidiasis. Eur J Med Res 16:187–195

    Article  CAS  Google Scholar 

  24. Montagnoli C, Sandini S, Bacci A, Romani L, La Valle R (2004) Immunogenicity and protective effect of recombinant enolase of Candida albicans in a murine model of systemic candidiasis. Med Mycol 42:319–324

    Article  CAS  Google Scholar 

  25. Xin H, Cutler JE (2011) Vaccine and monoclonal antibody that enhance mouse resistance to candidiasis. Clin Vaccine Immunol 18:1656–1667

    Article  CAS  Google Scholar 

  26. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  CAS  Google Scholar 

  27. Takahashi S, Ueda M, Tanaka A (2001) Function of the prosequence for in vivo folding and secretion of active Rhizopus oryzae lipase in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 55:454–462

    Article  CAS  Google Scholar 

  28. Hopp TP, Prickett KS, Price VL, Libby RT et al (1988) A short polypeptide marker sequence useful for recombinant protein identification and purification. Nat Biotechnol 6:1204–1210

    Article  CAS  Google Scholar 

  29. Kuroda K, Matsui K, Higuchi S, Kotaka A, Sahara H, Hata Y, Ueda M (2009) Enhancement of display efficiency in yeast display system by vector engineering and gene disruption. Appl Microbiol Biotechnol 82:713–719

    Article  CAS  Google Scholar 

  30. Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    Article  CAS  Google Scholar 

  31. Shibasaki S, Kawabata A, Ishii J, Yagi S et al (2007) Construction of a novel synergistic system for production and recovery of secreted recombinant proteins by the cell surface engineering. Appl Microbiol Biotechnol 75:821–828

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Miki Karasaki for the preparation of figures. This chapter described the work supported by the regional innovation creation R&D programs of the Ministry of Economy, Trade and Industry, Japan (22R5005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Shibasaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Shibasaki, S., Ueda, M. (2016). Oral Vaccine Development by Molecular Display Methods Using Microbial Cells. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 1404. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-3389-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3389-1_32

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-3388-4

  • Online ISBN: 978-1-4939-3389-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics