Vaccine Design pp 155-166 | Cite as

Development of Rabies Virus-Like Particles for Vaccine Applications: Production, Characterization, and Protection Studies

  • Diego FontanaEmail author
  • Marina Etcheverrigaray
  • Ricardo Kratje
  • Claudio Prieto
Part of the Methods in Molecular Biology book series (MIMB, volume 1403)


Rabies is a viral infection of the central nervous system for which vaccination is the only treatment possible. Besides preexposure, vaccination is highly recommended for people living in endemic areas, veterinarians, and laboratory workers. Our group has developed rabies virus-like particles (RV-VLPs) with immunogenic features expressed in mammalian cells for vaccine applications. In this chapter the methods to obtain and characterize a stable HEK293 cell line expressing RV-VLPs are detailed. Further, analytical ultracentrifugation steps to purify the obtained VLPs are developed, as well as western blot, dynamic light scattering, and immunogold electron microscopy to analyze the size, distribution, shape, and antigenic conformation of the purified particles. Finally, immunization protocols are described to study the immunogenicity of RV-VLPs.

Key words

Vaccine development Virus-like particles Rabies Lentiviral vectors Stable cell line HEK293 



The authors would like to thank Juan Pablo Soto (Institutional Image, Universidad Nacional del Litoral, Argentina) for technical support.


  1. 1.
    Yousaf MZ, Qasim M, Zia S, Khan MR, Ashfaq UA, Khan S (2012) Rabies molecular virology, diagnosis, prevention and treatment. Virol J 9:50CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Schnell MJ, McGettigan JP, Wirblich C, Papaneri A (2010) The cell biology of rabies virus: using stealth to reach the brain. Nat Rev Microbiol 8:51–61PubMedGoogle Scholar
  3. 3.
    Gautret P, Parola P (2012) Rabies vaccination for international travelers. Vaccine 30:126–133CrossRefPubMedGoogle Scholar
  4. 4.
    Meslin FX, Briggs DJ (2013) Eliminating canine rabies, the principal source of human infection: what will it take? Antivir Res 98:291–296CrossRefPubMedGoogle Scholar
  5. 5.
    World Health Organization (2013). WHO expert consultation on rabies. Second report. World Health Organ Tech Rep Ser 982Google Scholar
  6. 6.
    Ertl HC (2009) Novel vaccines to human rabies. PLoS Negl Trop Dis 3(9):e515CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Yang DK, Kim HH, Lee KW, Song JY (2013) The present and future of rabies vaccine in animals. Clin Exp Vaccine Res 2:19–25CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Noad R, Roy P (2003) Virus-like particles as immunogens. Trends Microbiol 11:438–444CrossRefPubMedGoogle Scholar
  9. 9.
    Roldão A, Mellado MCM, Castilho LR, Carrondo MJT, Alves PM (2010) Virus-like particles in vaccine development. Expert Rev Vaccines 9(10):1149–1176CrossRefPubMedGoogle Scholar
  10. 10.
    Lua LHL, Connors NK, Sainsbury F, Chuan YP, Wibowo N, Middelberg APJ (2014) Bioengineering virus-like particles as vaccines. Biotechnol Bioeng 111:425–440CrossRefPubMedGoogle Scholar
  11. 11.
    Fontana D, Kratje R, Etcheverrigaray M, Prieto C (2014) Rabies virus-like particles expressed in HEK293 cells. Vaccine 32:2799–2804CrossRefPubMedGoogle Scholar
  12. 12.
    Wu CY, YehYC YYC, Chou C, Liu MT, Wu HS, Chan JT, Hsiao PW (2010) Mammalian expression of virus-like particles for advanced mimicry of authentic influenza virus. Plos One 5(3):e784CrossRefGoogle Scholar
  13. 13.
    Chuan Li C, Liu F, Liang M, Zhang Q, Wang X, Wang T, Li J, Li D (2010) Hantavirus-like particles generated in CHO cells induce specific immune responses in C57BL/6 mice. Vaccine 28:4294–4300CrossRefPubMedGoogle Scholar
  14. 14.
    Hua RH, Li YN, Chen ZS, Liu LK et al (2014) Generation and characterization of a new mammalian cell line continuously expressing virus-like particles of Japanese encephalitis virus for a subunit vaccine candidate. BMC Biotechnol 14:62CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, Naldini L (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471PubMedPubMedCentralGoogle Scholar
  16. 16.
    Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267CrossRefPubMedGoogle Scholar
  17. 17.
    Picanço-Castro V, Fontes AM, de Sousa Russo-Carbolante EM, Covas DR (2008) Lentiviral-mediated gene transfer – a patent review. Expert Opin Ther Pat 18(5):1–15CrossRefGoogle Scholar
  18. 18.
    Federico M (ed) (2010) Lentivirus gene engineering protocols. 2nd edition. Methods in Molecular Biology, Vol. 614. Humana, UK
  19. 19.
    Zeltins A (2012) Construction and characterization of virus-like particles: a review. Mol Biotechnol 53:92–107CrossRefGoogle Scholar
  20. 20.
    Wilbur LA, Aubert MFA (1996) The NIH potency test. In: Meslin FX, Kaplan MM, Koprowsky H (eds) Laboratory techniques in rabies. WHO, Geneva, Switzerland, pp 360–366Google Scholar
  21. 21.
    Prieto C, Fontana D, Etcheverrigaray M, Kratje R (2011) A strategy to obtain recombinant cell lines with high expression levels. Lentiviral vector-mediated transgenesis. BMC Proc 5(8):P7CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Diego Fontana
    • 1
    • 2
    Email author
  • Marina Etcheverrigaray
    • 1
  • Ricardo Kratje
    • 1
  • Claudio Prieto
    • 1
    • 2
  1. 1.Cell Culture Laboratory, Biochemistry and Biological Sciences SchoolUniversidad Nacional del LitoralSanta FeArgentina
  2. 2.Biotechnological Development Laboratory, Biochemistry and Biological Sciences SchoolUniversidad Nacional del LitoralSanta FeArgentina

Personalised recommendations