Vaccine Design pp 131-152 | Cite as

Proteomic Monitoring of B Cell Immunity

  • Radwa Ewaisha
  • Karen S. AndersonEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1403)


Immune monitoring is critical in settings of infection, autoimmunity, and cancer, but our understanding of the diversity of the antibody immune repertoire has been limited to selected target antigens and epitopes. Development of new vaccines requires monitoring of B cell immunity and identification of candidate antigens. As vaccines become more complex, novel techniques are required for monitoring the diversity of the B cell immune response. Since antibodies recognize both linear and conformational protein and glycoprotein epitopes, recent advances in proteomic and glycomic technologies for rapid display of antigenic structures are leading to methods for proteome-wide immune monitoring. Here, we review different approaches for protein display for immune monitoring, and provide methods for in situ protein display for the rapid detection and validation of antibody repertoires.

Key words

B cell Antibody Immunity Epitope Protein display Immune monitoring Phage display Protein arrays 


  1. 1.
    Behring K (1890) Ueber das zustandekommen der diphtherie-immunität und der tetanus-immunität bei thieren. Dtsch Med Wochenschr 16:1113–1114CrossRefGoogle Scholar
  2. 2.
    De Veer M, Meeusen E (2011) New developments in vaccine research--unveiling the secret of vaccine adjuvants. Discov Med 12:195–204PubMedGoogle Scholar
  3. 3.
    Meinke A, Henics T, Nagy E (2004) Bacterial genomes pave the way to novel vaccines. Curr Opin Microbiol 7:314–320CrossRefPubMedGoogle Scholar
  4. 4.
    Berzofsky JA, Ahlers JD, Belyakov IM (2001) Strategies for designing and optimizing new generation vaccines. Nat Rev Immunol 1:209–219CrossRefPubMedGoogle Scholar
  5. 5.
    FDA (2010-04-29) Approval letter – ProvengeGoogle Scholar
  6. 6.
    Le DT, Pardoll DM, Jaffee EM (2010) Cellular vaccine approaches. Cancer J 16:304CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hodi FS, O’ Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Qiu J, Anderson KS (2013) Autoantibodies and biomarker discovery. In: Issaq HJ, Veenstra TD, (eds) Proteomic and metabolomic approaches to biomarker discovery. Elsevier. Massachusetts, USAGoogle Scholar
  9. 9.
    Silverstein AM (2009) A history of immunology. Academic, New YorkGoogle Scholar
  10. 10.
    Zinkernagel RM, Hengartner H (2006) Protective ‘immunity’ by pre‐existent neutralizing antibody titers and preactivated T cells but not by so‐called ‘immunological memory’. Immunol Rev 211:310–319CrossRefPubMedGoogle Scholar
  11. 11.
    Anderson KS, LaBaer J (2005) The sentinel within: exploiting the immune system for cancer biomarkers. J Proteome Res 4:1123–1133CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ouchterlony O (1949) Antigen-antibody reactions in gels. Acta Pathol Microbiol Scand A 26:507–515Google Scholar
  13. 13.
    Berson SA, Yalow RS (1959) Quantitative aspects of the reaction between insulin and insulin-binding antibody. J Clin Invest 38:1996–2016CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kricka LJ, Savory J (2011) International year of Chemistry 2011. A guide to the history of clinical chemistry. Clin Chem 57:1118–1126CrossRefPubMedGoogle Scholar
  15. 15.
    Wu AH (2006) A selected history and future of immunoassay development and applications in clinical chemistry. Clin Chim Acta 369:119–124CrossRefPubMedGoogle Scholar
  16. 16.
    Lequin RM (2005) Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem 51:2415–2418CrossRefPubMedGoogle Scholar
  17. 17.
    Engvall E, Perlmann P (1971) Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry 8:871–874CrossRefPubMedGoogle Scholar
  18. 18.
    Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317CrossRefPubMedGoogle Scholar
  19. 19.
    Santini C, Brennan D, Mennuni C et al (1998) Eficient display of an HCV cDNA expression library as C-terminal fusion to the capsid protein D of bacteriophage lambda. J Mol Biol 282:125–135CrossRefPubMedGoogle Scholar
  20. 20.
    Beghetto E, De Paolis F, Spadoni A, Del Porto P, Buffolano W, Gargano N (2008) Molecular dissection of the human B cell response against cytomegalovirus infection by lambda display. J Virol Methods 151:7–14CrossRefPubMedGoogle Scholar
  21. 21.
    Beghetto E, De Paolis F, Montagnani F, Cellesi C, Gargano N (2009) Discovery of new Mycoplasma pneumoniae antigens by use of a whole-genome lambda display library. Microbes Infect 11:66–73CrossRefPubMedGoogle Scholar
  22. 22.
    Beghetto E, Gargano N, Ricci S et al (2006) Discovery of novel Streptococcus pneumoniae antigens by screening a whole-genome λ-display library. FEMS Microbiol Lett 262:14–21CrossRefPubMedGoogle Scholar
  23. 23.
    Wang X, Yu J, Sreekumar A et al (2005) Autoantibody signatures in prostate cancer. N Engl J Med 353:1224–1235CrossRefPubMedGoogle Scholar
  24. 24.
    Chatterjee M, Mohapatra S, Ionan A et al (2006) Diagnostic markers of ovarian cancer by high-throughput antigen cloning and detection on arrays. Cancer Res 66:1181–1190CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Chen G, Wang X, Yu J et al (2007) Autoantibody profiles reveal ubiquilin 1 as a humoral immune response target in lung adenocarcinoma. Cancer Res 67:3461–3467CrossRefPubMedGoogle Scholar
  26. 26.
    Legutki JB, Johnston SA (2013) Immunosignatures can predict vaccine efficacy. Proc Natl Acad Sci U S A 110:18614–18619CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Stevens RC (2000) Design of high-throughput methods of protein production for structural biology. Structure 8:R177–R185CrossRefPubMedGoogle Scholar
  28. 28.
    Jackson AM, Boutell J, Cooley N, He M (2004) Cell-free protein synthesis for proteomics. Brief Funct Genomic Proteomic 2:308–319CrossRefPubMedGoogle Scholar
  29. 29.
    Ramachandran N, Hainsworth E, Bhullar B et al (2004) Self-assembling protein microarrays. Science 305:86–90CrossRefPubMedGoogle Scholar
  30. 30.
    Ramachandran N, Raphael JV, Hainsworth E et al (2008) Next-generation high-density self-assembling functional protein arrays. Nat Methods 5:535–538CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ramachandran N, Hainsworth E, Demirkan G, LaBaer J (2006) On-chip protein synthesis for making microarrays. New and emerging proteomic techniques. Springer, New York, NY, pp 1–14CrossRefGoogle Scholar
  32. 32.
    Festa F, Rollins SM, Vattem K et al (2013) Robust microarray production of freshly expressed proteins in a human milieu. Proteomics-Clin Appl 7:372–377CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lee JR, Magee DM, Gaster RS, LaBaer J, Wang SX (2013) Emerging protein array technologies for proteomics. Expert Rev Proteomics 10(1):65–75CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Seiler CY, Park JG, Sharma A et al (2013) DNASU plasmid and PSI: biology-materials repositories: resources to accelerate biological research. Nucleic Acids Res 42(Database issue):D1253–D260PubMedPubMedCentralGoogle Scholar
  35. 35.
    Anderson KS, Ramachandran N, Wong J et al (2008) Application of protein microarrays for multiplexed detection of antibodies to tumor antigens in breast cancer. J Proteome Res 7:1490–1499CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ramachandran N, Anderson KS, Jv R et al (2008) Tracking humoral responses using self assembling protein microarrays. Proteomics Clin Appl 2:1518–1527CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Anderson KS, Cramer DW, Sibani S et al (2015) Autoantibody signature for the serologic detection of ovarian cancer. J Proteome Res 14:578–586CrossRefPubMedGoogle Scholar
  38. 38.
    Montor WR, Huang J, Hu Y et al (2009) Genome-wide study of Pseudomonas aeruginosa outer membrane protein immunogenicity using self-assembling protein microarrays. Infect Immun 77:4877–4886CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Anderson KS (2011) ‘Multiplexed Detection of Antibodies Using Programmable Bead Arrays.’ In: Catherine J. Wu (ed) Protein microarray for disease analysis (Humana Press).Google Scholar
  40. 40.
    Anderson KS, Wong J, Vitonis A et al (2010) p53 autoantibodies as potential detection and prognostic biomarkers in serous ovarian cancer. Cancer Epidemiol Biomarkers Prev 19:859–868CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wang J, Barker K, Steel J et al (2013) A versatile protein microarray platform enabling antibody profiling against denatured proteins. Proteomics Clin Appl 7:378–383CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Wong J, Sibani S, Lokko NN, LaBaer J, Anderson KS (2009) Rapid detection of antibodies in sera using multiplexed self-assembling bead arrays. J Immunol Methods 350:171–182CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Anderson KS, Wong J, D’Souza G et al (2011) Serum antibodies to the HPV16 proteome as biomarkers for head and neck cancer. Br J Cancer 104:1896–1905CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    de la Rica R, Stevens MM (2012) Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat Nanotechnol 7:821–824CrossRefPubMedGoogle Scholar
  45. 45.
    A study of a new candidate vaccine against Hepatitis C Virus (HCV).

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Center for Personalized Diagnostics, School of Life Sciences, The Biodesign InstituteArizona State UniversityTempeUSA

Personalised recommendations