Skip to main content

Reverse Vaccinology: The Pathway from Genomes and Epitope Predictions to Tailored Recombinant Vaccines

  • Protocol
  • First Online:
Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1403))

Abstract

In this chapter, we review the computational approaches that have led to a new generation of vaccines in recent years. There are many alternative routes to develop vaccines based on the technology of reverse vaccinology. We focus here on bacterial infectious diseases, describing the general workflow from bioinformatic predictions of antigens and epitopes down to examples where such predictions have been used successfully for vaccine development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    CD8 and CD4 are transmembrane glycoproteins. They function as co-receptors of T cell receptors on the surface of T cells. “CD” is an abbreviation for cluster of differentiation; a superscripted plus or minus sign indicates whether this type of cell actually does or does not express the specific receptor. CTLs do not possess a CD4 receptor, and are therefore unable to bind to the MHC I I -peptide complex. In contrast, T helper cells are unable to bind MHC I as they do not express CD8 receptors on their cell surfaces.

References

  1. Janeway CAJ, Travers P, Walport M et al (2001) Immunobiology. Garland Science, New York

    Google Scholar 

  2. Alberts B, Johnson A, Walter P et al (2007) Molecular biology of the cell. Taylor & Francis, New York

    Google Scholar 

  3. Neumann J (2008) Immunbiologie. Springer-Lehrbuch, Berlin, Heidelberg

    Book  Google Scholar 

  4. Saha B (2001) Encyclopedia of life sciences. Wiley, Chichester, UK

    Google Scholar 

  5. WHO UNICEF World Bank (2009) State of the world’s vaccines and immunization. World Health Organization, Geneva

    Google Scholar 

  6. Flower DR (2009) Bioinformatics for vaccinology. Wiley, Chichester, UK

    Google Scholar 

  7. Rinaudo CD, Telford JL, Rappuoli R et al (2009) Vaccinology in the genome era. J Clin Invest 119:2515–2525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Seib KL, Zhao X, Rappuoli R (2012) Developing vaccines in the era of genomics: a decade of reverse vaccinology. Clin Microbiol Infect 18:109–116

    Article  CAS  PubMed  Google Scholar 

  9. Pizza M, Scarlato V, Masignani V et al (2000) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287:1816–1820

    Article  CAS  PubMed  Google Scholar 

  10. Medicinal products and human use. Bexsero. Technical report, European Medicines Agency. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_

  11. Tettelin H, Masignani V, Cieslewicz MJ et al (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial pan-genome. Proc Natl Acad Sci USA 102:13950–13955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vernikos G, Medini D, Riley DR et al (2014) Ten years of pan-genome analyses. Curr Opin Microbiol 23C:148–154

    Google Scholar 

  13. Hiller NL, Janto B, Hogg JS et al (2007) Comparative genomic analyses of seventeen Streptococcus pneumoniae strains: insights into the pneumococcal supragenome. J Bacteriol 189:8186–8195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thein M, Sauer G, Paramasivam N et al (2010) Efficient subfractionation of Gram-negative bacteria for proteomics studies. J Proteome Res 9:6135–6147

    Article  CAS  PubMed  Google Scholar 

  15. Emanuelsson O, Brunak S, von Heijne G et al (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    Article  CAS  PubMed  Google Scholar 

  16. Punta M, Forrest LR, Bigelow H et al (2007) Membrane protein prediction methods. Methods 41:460–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Su EC-Y, Chiu H-S, Lo A et al (2007) Protein subcellular localization prediction based on compartment-specific features and structure conservation. BMC Bioinformatics 8:330

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yu NY, Wagner JR, Laird MR et al (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26:1608–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu C-S, Chen Y-C, Lu C-H et al (2006) Prediction of protein subcellular localization. Proteins 64:643–651

    Article  CAS  PubMed  Google Scholar 

  20. Rashid M, Saha S, Raghava GP (2007) Support vector machine-based method for predicting subcellular localization of mycobacterial proteins using evolutionary information and motifs. BMC Bioinformatics 8:337

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chou KC, Shen HB (2006) Large-scale predictions of gram-negative bacterial protein subcellular locations. J Proteome Res 5:3420–3428

    Article  CAS  PubMed  Google Scholar 

  22. Paramasivam N, Linke D (2011) Clubsub-P: cluster-based subcellular localization prediction for gram-negative bacteria and archaea. Front Microbiol 2:218

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dunston CR, Herbert R, Griffiths HR (2015) Improving T cell-induced response to subunit vaccines: opportunities for a proteomic systems approach. J Pharm Pharmacol 67(3):290–9

    Article  CAS  PubMed  Google Scholar 

  24. Zhang H, Lund O, Nielsen M (2009) The PickPocket method for predicting binding specificities for receptors based on receptor pocket similarities: application to MHC-peptide binding. Bioinformatics 25:1293–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Karosiene E, Lundegaard C, Lund O et al (2012) NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Immunogenetics 64:177–186

    Article  CAS  PubMed  Google Scholar 

  26. Wang P, Sidney J, Dow C et al (2008) A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol 4, e000048

    Google Scholar 

  27. Zhang L, Udaka K, Mamitsuka H et al (2012) Toward more accurate pan-specific MHC-peptide binding prediction: a review of current methods and tools. Brief Bioinform 13:350–364

    Article  CAS  PubMed  Google Scholar 

  28. Bui H-H, Sidney J, Peters B et al (2005) Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications. Immunogenetics 57:304–314

    Article  CAS  PubMed  Google Scholar 

  29. Sidney J, Assarsson E, Moore C et al (2008) Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries. Immunome Res 4:2

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nielsen M, Lundegaard C, Worning P et al (2003) Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 12:1007–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Peters B, Sette A (2005) Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinformatics 6:132

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kim Y, Sidney J, Pinilla C et al (2009) Derivation of an amino acid similarity matrix for peptide: MHC binding and its application as a Bayesian prior. BMC Bioinformatics 10:394

    Article  PubMed  PubMed Central  Google Scholar 

  33. Moutaftsi M, Peters B, Pasquetto V et al (2006) A consensus epitope prediction approach identifies the breadth of murine T(CD8+)-cell responses to vaccinia virus. Nat Biotechnol 24:817–819

    Article  CAS  PubMed  Google Scholar 

  34. Nielsen M, Lundegaard C, Blicher T et al (2007) NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. PLoS One 2, e796

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nielsen M, Lund O (2009) NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC Bioinformatics 10:296

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nielsen M, Lundegaard C, Lund O (2007) Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinformatics 8:238

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nielsen M, Lundegaard C, Blicher T et al (2008) Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence: NetMHCIIpan. PLoS Comp Biol 4, e1000107

    Article  Google Scholar 

  38. Sturniolo T, Bono E, Ding J et al (1999) Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat Biotechnol 17:555–561

    Article  CAS  PubMed  Google Scholar 

  39. Paul S, Weiskopf D, Angelo MA et al (2013) HLA class I alleles are associated with peptide-binding repertoires of different size, affinity, and immunogenicity. J Immunol 191:5831–5839

    Article  CAS  PubMed  Google Scholar 

  40. Doytchinova IA, Guan P, Flower DR (2004) Identifying human MHC supertypes using bioinformatic methods. J Immunol 172:4314–4323

    Article  CAS  PubMed  Google Scholar 

  41. Sidney J, Peters B, Frahm N et al (2008) HLA class I supertypes: a revised and updated classification. BMC Immunol 9:1

    Article  PubMed  PubMed Central  Google Scholar 

  42. Doytchinova IA, Flower DR (2005) In silico identification of supertypes for class II MHCs. J Immunol 174:7085–7095

    Article  CAS  PubMed  Google Scholar 

  43. Ponomarenko JV, van Regenmortel MHV (2009) B-cell epitope prediction. In: Gu J, Bourne PE (eds) Structural bioinformatics. Wiley-Blackwell, New York

    Google Scholar 

  44. Kringelum JV, Lundegaard C, Lund O et al (2012) Reliable B cell epitope predictions: impacts of method development and improved benchmarking. PLoS Comput Biol 8, e1002829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Larsen JEP, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. Immunome Res 2:2

    Article  PubMed  PubMed Central  Google Scholar 

  46. Saha S, Raghava GPS (2006) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65:40–48

    Article  CAS  PubMed  Google Scholar 

  47. Gao J, Faraggi E, Zhou Y et al (2012) BEST: improved prediction of B-cell epitopes from antigen sequences. PLoS One 7, e40104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ponomarenko J, Bui H-H, Li W et al (2008) ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics 9:514

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kunik V, Ashkenazi S, Ofran Y (2012) Paratome: an online tool for systematic identification of antigen-binding regions in antibodies based on sequence or structure. Nucleic Acids Res 40:W521–W524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Moreau V, Fleury C, Piquer D et al (2008) PEPOP: computational design of immunogenic peptides. BMC Bioinformatics 9:71

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lin SY, Cheng C, Su EC (2013) Prediction of B-cell epitopes using evolutionary information and propensity scales. BMC Bioinformatics 14:S10

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kim Y, Ponomarenko J, Zhu Z et al (2012) Immune epitope database analysis resource. Nucleic Acid Res 40:W525–W530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Patronov A, Doytchinova I (2013) T-cell epitope vaccine design by immunoinformatics. Open Biol 3:120139

    Article  PubMed  PubMed Central  Google Scholar 

  54. Shimizu H, Thorley B, Paladin FJ et al (2004) Circulation of type 1 vaccine-derived poliovirus in the Philippines in 2001. J Virol 78:13512–13521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Moyle PM (2015) Progress in vaccine development. Curr Protoc Microbiol 36:1–17

    PubMed  Google Scholar 

  56. Centers for Disease Control and Prevention (2012) Epidemiology and prevention of vaccine-preventable diseases. Public Health Foundation, Washington DC

    Google Scholar 

  57. Plotkin S (2014) History of vaccination. Proc Natl Acad Sci U S A 2014:1–5

    Google Scholar 

  58. Moyle PM, Toth I (2013) Modern subunit vaccines: development, components, and research opportunities. ChemMedChem 8:360–376

    Article  CAS  PubMed  Google Scholar 

  59. Purcell AW, McCluskey J, Rossjohn J (2007) More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov 6:404–414

    Article  CAS  PubMed  Google Scholar 

  60. Moyle PM, Toth I (2008) Self-adjuvanting lipopeptide vaccines. Curr Med Chem 15:506–516

    Article  CAS  PubMed  Google Scholar 

  61. Sato Y, Sato H (1999) Development of acellular pertussis vaccines. Biologicals 27:61–69

    Article  CAS  PubMed  Google Scholar 

  62. Michel M-L, Tiollais P (2010) Hepatitis B vaccines: protective efficacy and therapeutic potential. Pathol Biol 58:288–295

    Article  CAS  PubMed  Google Scholar 

  63. Cybulski RJ, Sanz P, O’Brien AD (2009) Anthrax vaccination strategies. Mol Aspects Med 30:490–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chun JH, Hong KJ, Cha SH et al (2012) Complete genome sequence of Bacillus anthracis H9401, an isolate from a Korean patient with anthrax. J Bacteriol 194:4116–4117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Keitel WA (2006) Recombinant protective antigen 102 (rPA102): profile of a second-generation anthrax vaccine. Expert Rev Vaccines 5:417–430

    Article  CAS  PubMed  Google Scholar 

  66. McKee SJ, Bergot A-S, Leggatt GR (2015) Recent progress in vaccination against human papillomavirus-mediated cervical cancer. Rev Med Virol 25:54–71

    Article  CAS  PubMed  Google Scholar 

  67. Khallouf H, Grabowska A, Riemer A (2014) Therapeutic vaccine strategies against human papillomavirus. Vaccines 2:422–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Merck. http://www.merck.com

  69. Vincent J-L (2014) Vaccine development and passive immunization for Pseudomonas aeruginosa in critically ill patients: a clinical update. Future Microbiol 9:457–463

    Article  CAS  PubMed  Google Scholar 

  70. Westritschnig K, Hochreiter R, Wallner G et al (2014) A randomized, placebo-controlled phase I study assessing the safety and immunogenicity of a Pseudomonas aeruginosa hybrid outer membrane protein OprF/I vaccine (IC43) in healthy volunteers. Hum Vaccin Immunother 10:170–183

    Article  CAS  PubMed  Google Scholar 

  71. Skwarczynski M, Toth I (2014) Recent advances in peptide-based subunit nanovaccines. Nanomedicine 9:2657–2669

    Article  CAS  PubMed  Google Scholar 

  72. Sharma M, Dixit A (2015) Identification and immunogenic potential of B cell epitopes of outer membrane protein OmpF of Aeromonas hydrophila in translational fusion with a carrier protein. Applied Microbiol Biotechnol 99(15):6277–91

    Article  CAS  Google Scholar 

  73. Weltzin R, Guy B, Thomas WD et al (2000) Parenteral adjuvant activities of Escherichia coli heat-labile toxin and its B subunit for immunization of mice against gastric Helicobacter pylori infection. Infect Immun 68:2775–2782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Van Regenmortel MHV (1996) Mapping epitope structure and activity: from one-dimensional prediction to four-dimensional description of antigenic specificity. Methods 9:465–472

    Article  PubMed  Google Scholar 

  75. Sette A, Fikes J (2003) Epitope-based vaccines: an update on epitope identification, vaccine design and delivery. Curr Opin Immunol 15:461–470

    Article  CAS  PubMed  Google Scholar 

  76. Guichard G, Zerbib A, Gal FA et al (2000) Melanoma peptide MART-1(27-35) analogues with enhanced binding capacity to the human class I histocompatibility molecule HLA-A2 by introduction of a β-amino acid residue: implications for recognition by tumor-infiltrating lymphocytes. J Med Chem 43:3803–3808

    Article  CAS  PubMed  Google Scholar 

  77. Reinelt S, Marti M, Dédier S et al (2001) β-amino acid scan of a class I major histocompatibility complex-restricted alloreactive T-cell epitope. J Biol Chem 276:24525–24530

    Article  CAS  PubMed  Google Scholar 

  78. Webb AI, Dunstone MA, Williamson NA et al (2005) T cell determinants incorporating β-amino acid residues are protease resistant and remain immunogenic in vivo. J Immunol 175:3810–3818

    Article  CAS  PubMed  Google Scholar 

  79. Brito LA, Malyala P, O’Hagan DT (2013) Vaccine adjuvant formulations: a pharmaceutical perspective. Semin Immunol 25:130–145

    Article  CAS  PubMed  Google Scholar 

  80. Pulendran B, Ahmed R (2011) Immunological mechanisms of vaccination. Nat Immunol 12:509–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Berti F, Adamo R (2013) Recent mechanistic insights on glycoconjugate vaccines and future perspectives. ACS Chem Biol 8:1653–1663

    Article  CAS  PubMed  Google Scholar 

  82. Plotkin SA (2009) Vaccines: the fourth century. Clin Vaccine Immunol 16:1709–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Azmi F, Fuaad AAHA, Skwarczynski M et al (2014) Recent progress in adjuvant discovery for peptide-based subunit vaccines. Hum Vaccin Immunother 10:778–796

    Article  CAS  PubMed  Google Scholar 

  84. Lua LHL, Connors NK, Sainsbury F et al (2014) Bioengineering virus-like particles as vaccines. Biotechnol Bioeng 111:425–440

    Article  CAS  PubMed  Google Scholar 

  85. Wieser A, Magistro G, Nörenberg D et al (2012) First multi-epitope subunit vaccine against extraintestinal pathogenic Escherichia coli delivered by a bacterial type-3 secretion system (T3SS). Int J Med Microbiol 302:10–18

    Article  CAS  PubMed  Google Scholar 

  86. Bumann D, Hueck C, Aebischer T et al (2000) Recombinant live Salmonella spp. for human vaccination against heterologous pathogens. FEMS Immunol Med Microbiol 27:357–364

    Article  CAS  PubMed  Google Scholar 

  87. Garmory HS, Leary SEC, Griffin KF et al (2003) The use of live attenuated bacteria as a delivery system for heterologous antigens. J Drug Target 11:471–479

    Article  CAS  PubMed  Google Scholar 

  88. Demento SL, Siefert AL, Bandyopadhyay A et al (2011) Pathogen-associated molecular patterns on biomaterials: a paradigm for engineering new vaccines. Trends Biotechnol 29:294–306

    Article  CAS  PubMed  Google Scholar 

  89. GAPVAC. http://gapvac.eu/

  90. HepaVac. http://www.hepavac.eu/

  91. A service of the U.S. National Institutes of Health. https://clinicaltrials.gov/

  92. Improvac. http://improvac.com

  93. El Garch H, Minke JM, Rehder J et al (2008) A West Nile virus (WNV) recombinant canarypox virus vaccine elicits WNV-specific neutralizing antibodies and cell-mediated immune responses in the horse. Vet Immunol Immunopathol 123:230–239

    Article  PubMed  Google Scholar 

  94. Bionorpharma. http://www.bionorpharma.com

  95. NovaDigm Therapeutics. http://www.novadigm.net/

  96. Schmidt CS, White CJ, Ibrahim AS et al (2012) NDV-3, a recombinant alum-adjuvanted vaccine for Candida and Staphylococcus aureus, is safe and immunogenic in healthy adults. Vaccine 30:7594–7600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Anderson AS, Miller A, Donald RGK et al (2012) Development of a multicomponent Staphylococcus aureus vaccine designed to counter multiple bacterial virulence factors. Hum Vaccin Immunother 8:1585–1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Emergent Biosolutions. http://emergentbiosolutions.com/

  99. Raghunandan R, Lu H, Zhou B et al (2014) An insect cell derived respiratory syncytial virus (RSV) F nanoparticle vaccine induces antigenic site II antibodies and protects against RSV challenge in cotton rats by active and passive immunization. Vaccine 32:6485–6492

    Article  CAS  PubMed  Google Scholar 

  100. Immune Response BioPharma, Inc. http://www.immuneresponsebiopharma.com

  101. Wedemeyer H, Schuller E, Schlaphoff V et al (2009) Therapeutic vaccine IC41 as late add-on to standard treatment in patients with chronic hepatitis C. Vaccine 27:5142–5151

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Linke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Michalik, M., Djahanshiri, B., Leo, J.C., Linke, D. (2016). Reverse Vaccinology: The Pathway from Genomes and Epitope Predictions to Tailored Recombinant Vaccines. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 1403. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3387-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3387-7_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3385-3

  • Online ISBN: 978-1-4939-3387-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics