Skip to main content

Assessment of Live Plague Vaccine Candidates

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1403))

Abstract

Since its creation in the early twentieth century, live plague vaccine EV has been successfully applied to millions of people without severe complications. This vaccine has been proven to elicit protection against both bubonic and pneumonic plague, and it is still in use in populations at risk mainly in the countries of the former Soviet Union. Despite extensive efforts in developing subunit vaccines, there is a reviving interest in creation of a precisely attenuated strain of Yersinia pestis superior to the EV that can serve as a live plague vaccine with improved characteristics. Here we summarize decades of experience of the Russian anti-plague research in developing a standard protocol for early-stage evaluation of safety and immunogenicity of live plague vaccines. This protocol allows step-by-step comparison of the novel test candidates with the EV vaccine by using subcutaneous immunization and bubonic plague infection models in two animal species, e.g., guinea pigs and mice.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Perry RD, Fetherston JD (1997) Yersinia pestis—etiologic agent of plague. Clin Microbiol Rev 10:35–66

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Feodorova VA, Corbel MJ (2009) Prospects for new plague vaccines. Expert Rev Vaccines 8:1721–1738

    Article  CAS  PubMed  Google Scholar 

  3. Feodorova VA, Motin VL (2012) Plague vaccines: current developments and future perspectives. Emerg Microb Infect 1, e36

    Article  CAS  Google Scholar 

  4. Feodorova VA, Motin VL (2011) Plague vaccines. In: Feodorova VA, Motin VL (eds) Vaccines against bacterial biothreat pathogens. Research Signpost, Kerala, pp 176–233

    Google Scholar 

  5. Motin VL, Pokrovskaya MS, Telepnev MV et al (1992) The difference in the lcrV sequences between Yersinia pestis and Yersinia pseudotuberculosis and its application for characterization of Y. pseudotuberculosis strains. Microb Pathog 12:165–175

    Article  CAS  PubMed  Google Scholar 

  6. Anisimov AP, Dentovskaya SV, Panfertsev EA et al (2010) Amino acid and structural variability of Yersinia pestis LcrV protein. Infect Genet Evol 10:137–145

    Article  CAS  PubMed  Google Scholar 

  7. Anderson GW, Leary SEC, Williamson ED et al (1996) Recombinant V antigen protects mice against pneumonic and bubonic plague caused by F1-capsule-positive and -negative strains of Yersinia pestis. Infect Immun 64:4580–4585

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Davis KJ, Fritz DL, Pitt ML et al (1996) Pathology of experimental pneumonic plague produced by fraction 1-positive and fraction 1-negative Yersinia pestis in African green monkeys (Cercopithecus aethiops). Arch Pathol Lab Med 120:156–163

    CAS  PubMed  Google Scholar 

  9. Smiley ST (2008) Current challenges in the development of vaccines for pneumonic plague. Expert Rev Vaccines 7:209–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Smiley ST (2008) Immune defense against pneumonic plague. Immunol Rev 225:256–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Williamson ED (2012) The role of immune correlates and surrogate markers in the development of vaccines and immunotherapies for plague. Adv Prev Med 2012:365980

    Article  CAS  PubMed  Google Scholar 

  12. Saltykova RA, Faibich MM (1975) Experience from a 30-year study of the stability of the properties of the plague vaccine strain EV in the USSR. Zh Mikrobiol Epidemiol Immunobiol 6:3–8

    PubMed  Google Scholar 

  13. Feodorova VA, Sayapina LV, Corbel MJ, Motin VL (2014) Russian vaccines against especially dangerous bacterial pathogens. Emerg Microb Infect 3, e86

    Article  CAS  Google Scholar 

  14. Girard G (1963) Immunity in plague infection. Results of 30 years of work with the Pasteurella pestis EV strain (Girard and Robic). Biol Med 52:631–731

    CAS  Google Scholar 

  15. Meyer KF, Smith G, Foster L et al (1974) Live, attenuated Yersinia pestis vaccine: virulent in nonhuman primates, harmless to guinea pigs. J Infect Dis 129(Suppl):S85–S112

    Article  PubMed  Google Scholar 

  16. Cui Y, Yang X, Xiao X et al (2014) Genetic variations of live attenuated plague vaccine strains (Yersinia pestis EV76 lineage) during laboratory passages in different countries. Infect Genet Evol 26:172–179

    Article  CAS  PubMed  Google Scholar 

  17. Sun W, Curtiss R (2013) Rational considerations about development of live attenuated Yersinia pestis vaccines. Curr Pharm Biotechnol 14:878–886

    Article  CAS  PubMed  Google Scholar 

  18. Wang X, Zhang X, Zhou D, Yang R (2013) Live-attenuated Yersinia pestis vaccines. Expert Rev Vaccines 12:677–686

    Article  CAS  PubMed  Google Scholar 

  19. Feodorova VA, Pan’kina LN, Savostina EP et al (2007) A Yersinia pestis lpxM-mutant live vaccine induces enhanced immunity against bubonic plague in mice and guinea pigs. Vaccine 25:7620–7628

    Article  CAS  PubMed  Google Scholar 

  20. Feodorova VA, Pan’kina LN, Savostina EP et al (2009) Pleiotropic effects of the lpxM mutation in Yersinia pestis resulting in modification of the biosynthesis of major immunoreactive antigens. Vaccine 27:2240–2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tidhar A, Flashner Y, Cohen S et al (2009) The NlpD lipoprotein is a novel Yersinia pestis virulence factor essential for the development of plague. PLoS One 4, e7023

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dentovskaya SV, Ivanov SA, Kopylov PK et al (2015) Selective protective potency of Yersinia pestis DeltanlpD mutants. Acta Naturae 7:102–108

    Google Scholar 

  23. Tian G, Qi Z, Qiu Y et al (2014) Comparison of virulence between the Yersinia pestis Microtus 201, an avirulent strain to humans, and the vaccine strain EV in rhesus macaques, Macaca mulatta. Hum Vaccin Immunother 10:3552–3560

    Article  PubMed  PubMed Central  Google Scholar 

  24. Vaccine prophylaxis. Basic requirements for the vaccine strains of plague microbe (2002) Testing guidelines. MU 3.3.1.1113-02, Moscow (in Russian)

    Google Scholar 

  25. Braciale VL, Nash M, Sinha N et al (2008) Correlates of immunity elicited by live Yersinia pestis vaccine. In: Georgiev VS, Western K, McGowan JJ (eds) Infectious disease. Springer, Totowa, NJ, pp 473–480

    Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Defense Threat Reduction Agency (HDTRA1-11-1-0032) to V.L.M. and by a subaward with the University of Texas Medical Branch at Galveston (No. 13-091) to V.A.F.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Valentina A. Feodorova or Vladimir L. Motin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Feodorova, V.A., Sayapina, L.V., Motin, V.L. (2016). Assessment of Live Plague Vaccine Candidates. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 1403. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3387-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3387-7_27

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3385-3

  • Online ISBN: 978-1-4939-3387-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics