Skip to main content

Anti-Lyme Subunit Vaccines: Design and Development of Peptide-Based Vaccine Candidates

  • Protocol
  • First Online:
Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1403))

Abstract

Vaccinology today has been presented with several avenues to improve protection against infectious disease. The recent employment of the reverse vaccinology technique has changed the face of vaccine development against many pathogens, including Borrelia burgdorferi, the causative agent of Lyme disease. Using this technique, genomics and in silico analyses come together to identify potentially antigenic epitopes in a high-throughput fashion. The forward methodology of vaccine development was used previously to generate the only licensed human vaccine for Lyme disease, which is no longer on the market. Using reverse vaccinology to identify new antigens and isolate specific epitopes to protect against B. burgdorferi, subunit vaccines will be generated that lack reactogenic and nonspecific epitopes, yielding more effective vaccine candidates. Additionally, novel epitopes are being utilized and are presently in the commercialization pipeline both for B. burgdorferi and other spirochaetal pathogens. The versatility and methodology of the subunit protein vaccine are described as it pertains to Lyme disease from conception to performance evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Comstedt P, Hanner M, Schuler W, Meinke A, Lundberg U (2014) Design and development of a novel vaccine for protection against Lyme borreliosis. PLoS One 9(11):e113294

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rappuoli R (2000) Reverse vaccinology. Curr Opin Microbiol 3:445–450

    Article  CAS  PubMed  Google Scholar 

  3. Wressnigg N, Barrett PN, Pollabauer EM, O'Rourke M, Portsmouth D et al (2014) A Novel multivalent OspA vaccine against Lyme borreliosis is safe and immunogenic in an adult population previously infected with Borrelia burgdorferi sensu lato. Clin Vaccine Immunol 21:1490–1499

    Article  PubMed  PubMed Central  Google Scholar 

  4. Small CM, Ajithdoss DK, Rodrigues Hoffmann A, Mwangi W, Esteve-Gassent MD (2014) Immunization with a Borrelia burgdorferi BB0172-derived peptide protects mice against Lyme disease. PLoS One 9(2):e88245

    Article  PubMed  PubMed Central  Google Scholar 

  5. Palaniappan RU, McDonough SP, Divers TJ, Chen CS, Pan MJ, Matsumoto M, Chang YF (2006) Immunoprotection of recombinant leptospiral immunoglobulin-like protein A against Leptospira interrogans serovar Pomona infection. Infect Immun 74:1745–1750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Downie AW (1951) Jenner’s cowpox inoculation. Br Med J 2:251–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang JR, Hardham JM, Barbour AG, Norris SJ (1997) Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell 89:275–285

    Article  CAS  PubMed  Google Scholar 

  8. Labandeira-Rey M, Skare JT (2001) Decreased infectivity in Borrelia burgdorferi strain B31 is associated with loss of linear plasmid 25 or 28-1. Infect Immun 69:446–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. de Silva AM, Telford SR 3rd, Brunet LR, Barthold SW, Fikrig E (1996) Borrelia burgdorferi OspA is an arthropod-specific transmission-blocking Lyme disease vaccine. J Exp Med 183:271–275

    Article  PubMed  Google Scholar 

  10. Nigrovic LE, Thompson KM (2007) The Lyme vaccine: a cautionary tale. Epidemiol Infect 135:1–8

    Article  CAS  PubMed  Google Scholar 

  11. Steere AC, Sikand VK, Meurice F, Parenti DL, Fikrig E, Schoen RT, Nowakowski J, Schmid CH, Laukamp S, Buscarino C, Krause DS (1998) Vaccination against Lyme disease with recombinant Borrelia burgdorferi outer-surface lipoprotein A with adjuvant. Lyme Disease Vaccine Study Group. N Engl J Med 339:209–215

    Article  CAS  PubMed  Google Scholar 

  12. Willett TA, Meyer AL, Brown EL, Huber BT (2004) An effective second-generation outer surface protein A-derived Lyme vaccine that eliminates a potentially autoreactive T cell epitope. Proc Natl Acad Sci U S A 101:1303–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barbour AG (1984) Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57:521–525

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Dulbecco R, Vogt M (1954) Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med 99:167–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Antoni G, Presentini R, Perin F, Tagliabue A, Ghiara P, Censini S, Volpini G, Villa L, Boraschi D (1986) A short synthetic peptide fragment of human interleukin 1 with immunostimulatory but not inflammatory activity. J Immunol 137:3201–3204

    CAS  PubMed  Google Scholar 

  16. Rudenko N, Golovchenko M, Grubhoffer L, Oliver JH Jr (2011) Updates on Borrelia burgdorferi sensu lato complex with respect to public health. Ticks Tick-Borne Dis 2:123–128

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lovrich SD, Callister SM, Lim LC, DuChateau BK, Schell RF (1994) Seroprotective groups of Lyme borreliosis spirochetes from North America and Europe. J Infect Dis 170:115–121

    Article  CAS  PubMed  Google Scholar 

  18. Kochi SK, Johnson RC, Dalmasso AP (1993) Facilitation of complement-dependent killing of the Lyme disease spirochete, Borrelia burgdorferi, by specific immunoglobulin G Fab antibody fragments. Infect Immun 61:2532–2536

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lawrenz MB, Wooten RM, Zachary JF, Drouin SM, Weis JJ, Wetsel RA, Norris SJ (2003) Effect of complement component C3 deficiency on experimental Lyme borreliosis in mice. Infect Immun 71:4432–4440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Szczepanski A, Benach JL (1991) Lyme borreliosis: host responses to Borrelia burgdorferi. Microbiol Rev 55:21–34

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Johnson AG, Gaines S, Landy M (1956) Studies on the O antigen of Salmonella typhosa. V Enhancement of antibody response to protein antigens by the purified lipopolysaccharide. J Exp Med 103:225–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vaz A, Glickstein L, Field JA, McHugh G, Sikand VK, Damle N, Steere AC (2001) Cellular and humoral immune responses to Borrelia burgdorferi antigens in patients with culture-positive early Lyme disease. Infect Immun 69:7437–7444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Haupl T, Landgraf S, Netusil P, Biller N, Capiau C, Desmons P, Hauser P, Burmester GR (1997) Activation of monocytes by three OspA vaccine candidates: lipoprotein OspA is a potent stimulator of monokines. FEMS Immunol Med Microbiol 19:15–23

    Article  CAS  PubMed  Google Scholar 

  24. Chou PY, Fasman GD (1978) Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol 47:45–148

    CAS  PubMed  Google Scholar 

  25. Emini EA, Hughes JV, Perlow DS, Boger J (1985) Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol 55:836–839

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kolaskar AS, Tongaonkar PC (1990) A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett 276:172–174

    Article  CAS  PubMed  Google Scholar 

  27. Larsen JE, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. Immunome Res 2:2

    Article  PubMed  PubMed Central  Google Scholar 

  28. Parker JM, Guo D, Hodges RS (1986) New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry 25:5425–5432

    Article  CAS  PubMed  Google Scholar 

  29. Appella E, Padlan EA, Hunt DF (1995) Analysis of the structure of naturally processed peptides bound by class I and class II major histocompatibility complex molecules. EXS 73:105–119

    CAS  PubMed  Google Scholar 

  30. Jones DS, Coutts SM, Gamino CA, Iverson GM, Linnik MD, Randow ME, Ton-Nu HT, Victoria EJ (1999) Multivalent thioether-peptide conjugates: B cell tolerance of an anti-peptide immune response. Bioconjug Chem 10:480–488

    Article  CAS  PubMed  Google Scholar 

  31. Montaguti P, Melloni E, Cavalletti E (1994) Acute intravenous toxicity of dimethyl sulfoxide, polyethylene glycol 400, dimethylformamide, absolute ethanol, and benzyl alcohol in inbred mouse strains. Arzneimittelforschung 44:566–570

    CAS  PubMed  Google Scholar 

  32. Turner PV, Pekow C, Vasbinder MA, Brabb T (2011) Administration of substances to laboratory animals: equipment considerations, vehicle selection, and solute preparation. J Am Assoc Lab Anim Sci 50:614–627

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Thackaberry EA, Wang X, Schweiger M, Messick K, Valle N, Dean B, Sambrone A, Bowman T, Xie M (2014) Solvent-based formulations for intravenous mouse pharmacokinetic studies: tolerability and recommended solvent dose limits. Xenobiotica 44:235–241

    Article  CAS  PubMed  Google Scholar 

  34. Dell RB, Holleran S, Ramakrishnan R (2002) Sample size determination. ILAR J 43:207–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barthold SW, Beck DS, Hansen GM, Terwilliger GA, Moody KD (1990) Lyme borreliosis in selected strains and ages of laboratory mice. J Infect Dis 162:133–138

    Article  CAS  PubMed  Google Scholar 

  36. Radolf JD, Caimano MJ, Stevenson B, Hu LT (2012) Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol 10:87–99

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bouchard KR, Wikel SK (2004) Care, maintenance and experimental infestation of ticks in the laboratory setting. In: Marquart WC (ed) Biology of disease vectors, 2nd edn. Elsevier, New York, pp 705–711

    Google Scholar 

  38. Maruskova M, Esteve-Gassent MD, Sexton VL, Seshu J (2008) Role of the BBA64 locus of Borrelia burgdorferi in early stages of infectivity in a murine model of Lyme disease. Infect Immun 76:391–402

    Article  CAS  PubMed  Google Scholar 

  39. Fikrig E, Barthold SW, Sun W, Feng W, Telford SR 3rd, Flavell RA (1997) Borrelia burgdorferi P35 and P37 proteins, expressed in vivo, elicit protective immunity. Immunity 6:531–539

    Article  CAS  PubMed  Google Scholar 

  40. Keane-Myers A, Nickell SP (1995) T cell subset-dependent modulation of immunity to Borrelia burgdorferi in mice. J Immunol 154:1770–1776

    CAS  PubMed  Google Scholar 

  41. Montgomery RR, Lusitani D, de Boisfleury CA, Malawista SE (2002) Human phagocytic cells in the early innate immune response to Borrelia burgdorferi. J Infect Dis 185:1773–1779

    Article  PubMed  Google Scholar 

  42. Fikrig E, Kantor FS, Barthold SW, Flavell RA (1993) Protective immunity in Lyme borreliosis. Parasitol Today 9:129–131

    Article  CAS  PubMed  Google Scholar 

  43. McKisic MD, Barthold SW (2000) T-cell-independent responses to Borrelia burgdorferi are critical for protective immunity and resolution of lyme disease. Infect Immun 68:5190–5197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Simon MM, Schaible UE, Kramer MD, Eckerskorn C, Museteanu C, Muller-Hermelink HK, Wallich R (1991) Recombinant outer surface protein a from Borrelia burgdorferi induces antibodies protective against spirochetal infection in mice. J Infect Dis 164:123–132

    Article  CAS  PubMed  Google Scholar 

  45. Revel AT, Talaat AM, Norgard MV (2002) DNA microarray analysis of differential gene expression in Borrelia burgdorferi, the Lyme disease spirochete. Proc Natl Acad Sci U S A 99:1562–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  47. Chomczynski P, Sacchi N (2006) The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat Protoc 1:581–585

    Article  CAS  PubMed  Google Scholar 

  48. Kirby KS (1956) A new method for the isolation of ribonucleic acids from mammalian tissues. Biochem J 64:405–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cserzo M, Eisenhaber F, Eisenhaber B, Simon I (2002) On filtering false positive transmembrane protein predictions. Protein Eng 15:745–752

    Article  CAS  PubMed  Google Scholar 

  50. Hessa T, Meindl-Beinker NM, Bernsel A, Kim H et al (2007) Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 450:1026–1030

    Article  CAS  PubMed  Google Scholar 

  51. Nugent T, Jones DT (2009) Transmembrane protein topology prediction using support vector machines. BMC Bioinformatics 10:159

    Article  PubMed  PubMed Central  Google Scholar 

  52. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  PubMed  Google Scholar 

  53. Chauhan JS, Bhat AH, Raghava GP, Rao A (2012) GlycoPP: a webserver for prediction of N- and O-glycosites in prokaryotic protein sequences. PLoS One 7(7):e40155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  PubMed  Google Scholar 

  55. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  CAS  PubMed  Google Scholar 

  56. Boxio R, Bossenmeyer-Pourie C, Vanderesse R, Dournon C, Nusse O (2005) The immunostimulatory peptide WKYMVm-NH activates bone marrow mouse neutrophils via multiple signal transduction pathways. Scand J Immunol 62:140–147

    Article  CAS  PubMed  Google Scholar 

  57. Arai R, Ueda H, Kitayama A, Kamiya N, Nagamune T (2001) Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Eng 14:529–532

    Article  CAS  PubMed  Google Scholar 

  58. Harris JR, Markl J (1999) Keyhole limpet hemocyanin (KLH): a biomedical review. Micron 30:597–623

    Article  CAS  PubMed  Google Scholar 

  59. Chu FS, Lau HP, Fan TS, Zhang GS (1982) Ethylenediamine modified bovine serum albumin as protein carrier in the production of antibody against mycotoxins. J Immunol Methods 55:73–78

    Article  CAS  PubMed  Google Scholar 

  60. Freund J, Casals J, Hosmer EP (1937) Sensitization and antibody formation after injection of tubercle bacilli and paraffin oil. Proc Soc Exp Biol Med 37:509–513

    Article  CAS  Google Scholar 

  61. O'Hagan DT, Ott GS, De Gregorio E, Seubert A (2012) The mechanism of action of MF59 - an innately attractive adjuvant formulation. Vaccine 30:4341–4348

    Article  PubMed  Google Scholar 

  62. Edelman R (1980) Vaccine adjuvants. Rev Infect Dis 2:370–383

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria D. Esteve-Gassent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Small, C.M., Mwangi, W., Esteve-Gassent, M.D. (2016). Anti-Lyme Subunit Vaccines: Design and Development of Peptide-Based Vaccine Candidates. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 1403. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3387-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3387-7_26

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3385-3

  • Online ISBN: 978-1-4939-3387-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics