Future Challenges for Vaccinologists

  • Sunil ThomasEmail author
  • Rima Dilbarova
  • Rino Rappuoli
Part of the Methods in Molecular Biology book series (MIMB, volume 1403)


Vaccination is one of the cheapest health-care interventions that have saved more lives than any other drugs or therapies. Due to successful immunization programs we rarely hear about some of the common diseases of the early twentieth century including small pox and polio. Vaccination programs have also helped to increase food production notably poultry, cattle, and milk production due to lower incidence of infectious diseases in farm animals. Though vaccination programs have eradicated several diseases and increased the quality of life there are several diseases that have no effective vaccines. Currently there are no vaccines for cancer, neurodegenerative diseases, autoimmune diseases, as well as infectious diseases like tuberculosis, AIDS, and parasitic diseases including malaria. Abuse of antibiotics has resulted in the generation of several antibiotic-resistant bacterial strains; hence there is a need to develop novel vaccines for antibiotic-resistant microorganisms. Changes in climate is another concern for vaccinologists. Climate change could lead to generation of new strains of infectious microorganisms that would require development of novel vaccines. Use of conventional vaccination strategies to develop vaccines has severe limitations; hence innovative strategies are essential in the development of novel and effective vaccines.

Key words

Vaccine Infectious disease Structure-based vaccine Antibiotic resistance Climate change 


  1. 1.
    Thomas S, Luxon BA (2013) Vaccines based on structure-based design provide protection against infectious diseases. Expert Rev Vaccines 12:1301–1311CrossRefPubMedGoogle Scholar
  2. 2.
    Furuya EY, Lowy FD (2006) Antimicrobial-resistant bacteria in the community setting. Nat Rev Microbiol 4:36–45CrossRefPubMedGoogle Scholar
  3. 3.
    Porco TC, Gao D, Scott JC, Shim E, Enanoria WT et al (2012) When does overuse of antibiotics become a tragedy of the commons? PLoS One 7(12), e46505CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Phillips I, Casewell M, Cox T et al (2004) Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J Antimicrob Chemother 53:28–52CrossRefPubMedGoogle Scholar
  5. 5.
    Reed D, Kemmerly SA (2009) Infection control and prevention: a review of hospital-acquired infections and the economic implications. Ochsner J 9:27–31PubMedPubMedCentralGoogle Scholar
  6. 6.
    Semenza JC, Herbst S, Rechenburg A, Suk JE, Höser C et al (2012) Climate change impact assessment of food- and waterborne diseases. Crit Rev Environ Sci Technol 42:857–890CrossRefPubMedGoogle Scholar
  7. 7.
    Semenza JC, Suk JE, Estevez V, Ebi KL, Lindgren E (2012) Mapping climate change vulnerabilities to infectious diseases in Europe. Environ Health Perspect 120:385–392CrossRefPubMedGoogle Scholar
  8. 8.
    Semenza JC, Menne B (2009) Climate change and infectious diseases in Europe. Lancet Infect Dis 9:365–375CrossRefPubMedGoogle Scholar
  9. 9.
    Estrada-Peña A, de la Fuente J (2014) The ecology of ticks and epidemiology of tick-borne viral diseases. Antiviral Res 108:104–128CrossRefPubMedGoogle Scholar
  10. 10.
    Levett PN (2001) Leptospirosis. Clin Microbiol Rev 14:296–326CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wang Z, Jin L, Wegrzyn A (2007) Leptospirosis vaccines. Microb Cell Fact 6:39CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Quintero J, Brochero H, Manrique-Saide P, Barrera-Pérez M et al (2014) Ecological, biological and social dimensions of dengue vector breeding in five urban settings of Latin America: a multi-country study. BMC Infect Dis 14:38CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Nagpal BN, Saxena R, Srivastava A, Singh N, Ghosh SK et al (2012) Retrospective study of chikungunya outbreak in urban areas of India. Indian J Med Res 135:351–358PubMedPubMedCentralGoogle Scholar
  14. 14.
    Clem A, Galwankar S (2005) Plague: a decade since the 1994 outbreaks in India. J Assoc Physicians India 53:457–464PubMedGoogle Scholar
  15. 15.
    Hemelaar J (2012) The origin and diversity of the HIV-1 pandemic. Trends Mol Med 18:182–192CrossRefPubMedGoogle Scholar
  16. 16.
    Johnston M, Fauci A (2011) HIV vaccine development—improving on natural immunity. N Engl J Med 365:873–875CrossRefPubMedGoogle Scholar
  17. 17.
    Cohen YZ, Dolin R (2013) Novel HIV vaccine strategies: overview and perspective. Ther Adv Vaccines 1:99–112CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hoenen T, Groseth A, Feldmann H (2012) Current ebola vaccines. Expert Opin Biol Ther 12:859–872CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wahl-Jensen VM, Afanasieva TA, Seebach J, Ströher U et al (2005) Effects of Ebola virus glycoproteins on endothelial cell activation and barrier function. J Virol 79:10442–10450CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Weyer J, Grobbelaar A, Blumberg L (2015) Ebola virus disease: history, epidemiology and outbreaks. Curr Infect Dis Rep 17:480CrossRefPubMedGoogle Scholar
  21. 21.
    Medina RA, García-Sastre A (2011) Influenza A viruses: new research developments. Nat Rev Microbiol 9:590–603CrossRefPubMedGoogle Scholar
  22. 22.
    Lambert LC, Fauci AS (2010) Influenza vaccines for the future. N Engl J Med 363:2036–2044CrossRefPubMedGoogle Scholar
  23. 23.
    Zukerman AJ (1996) Hepatitis viruses. In: Baron S (ed) Medical microbiology, 4th edn. Chapter 70.Google Scholar
  24. 24.
    Law LMJ, Landi A, Magee WC, Tyrrell DL, Houghton M (2013) Progress towards a hepatitis C virus vaccine. Emerg Microb Infect 2, e79CrossRefGoogle Scholar
  25. 25.
    Weiss SR, Leibowitz JL (2011) Coronavirus pathogenesis. Adv Virus Res 81:85–164CrossRefPubMedGoogle Scholar
  26. 26.
    Hui DS, Memish ZA, Zumla A (2014) Severe acute respiratory syndrome vs. the Middle East respiratory syndrome. Curr Opin Pulm Med 20:233–241CrossRefPubMedGoogle Scholar
  27. 27.
    Cleaveland S, Laurenson MK, Taylor LH (2001) Diseases of humans and their domestic mammals: pathogen characteristics, host range and the risk of emergence. Philos Trans R Soc Lond B Biol Sci 356:991–999CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Koo HL, Ajami N, Atmar RL, DuPont HL (2010) Noroviruses: the leading cause of gastroenteritis worldwide. Discov Med 10:61–70PubMedPubMedCentralGoogle Scholar
  29. 29.
    Debbink K, Lindesmith LC, Donaldson EF, Baric RS (2012) Norovirus immunity and the great escape. PLoS Pathog 8(10), e1002921CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Scarselli M, Aricò B, Brunelli B, Savino S, Di Marcello F et al (2011) Rational design of a meningococcal antigen inducing broad protective immunity. Sci Transl Med 3:91ra62CrossRefPubMedGoogle Scholar
  31. 31.
    Hunter PR, MacDonald AM, Carter RC (2010) Water supply and health. PLoS Med 7(11), e1000361CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bethony JM, Cole RN, Guo X, Kamhawi S et al (2011) Vaccines to combat the neglected tropical diseases. Immunol Rev 239:237–270CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Shen XY, Orson FM, Kosten TR (2012) Vaccines against drug abuse. Clin Pharmacol Ther 91:60–70CrossRefPubMedGoogle Scholar
  34. 34.
    Sommerset I, Krossøy B, Biering E, Frost P (2005) Vaccines for fish in aquaculture. Expert Rev Vaccines 4:89–101CrossRefPubMedGoogle Scholar
  35. 35.
    Peiris JS, de Jong MD, Guan Y (2007) Avian influenza virus (H5N1): a threat to human health. Clin Microbiol Rev 20:243–267CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ghadiali AH, Strother M, Naser SA, Manning EJ, Sreevatsan S (2004) Mycobacterium avium subsp. paratuberculosis strains isolated from Crohn’s disease patients and animal species exhibit similar polymorphic locus patterns. J Clin Microbiol 42:5345–5348CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Gortazar C, Reperant LA, Kuiken T, de la Fuente J, Boadella M et al (2014) Crossing the interspecies barrier: opening the door to zoonotic pathogens. PLoS Pathog 10(6), e1004129CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Taylor LH, Latham SM, Woolhouse ME (2001) Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci 356:983–989CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Monath TP (2013) Vaccines against diseases transmitted from animals to humans: a one health paradigm. Vaccine 31:5321–5338CrossRefPubMedGoogle Scholar
  40. 40.
    Giuliani MM, Adu-Bobie J, Comanducci M, Aricò B et al (2006) A universal vaccine for serogroup B meningococcus. Proc Natl Acad Sci USA 103:10834–10839CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Rappuoli R, Pizza M, Del Giudice G, De Gregorio E (2014) Vaccines, new opportunities for a new society. Proc Natl Acad Sci U S A 111:12288–12293CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Lankenau Institute for Medical ResearchWynnewoodUSA
  2. 2.College of Arts and SciencesDrexel UniversityPhiladelphiaUSA
  3. 3.GSK VaccinesSienaItaly

Personalised recommendations