Vaccine Design pp 295-311 | Cite as

Single-Vector, Single-Injection Recombinant Vesicular Stomatitis Virus Vaccines Against High-Containment Viruses

  • Michael A. Whitt
  • Thomas W. Geisbert
  • Chad E. Mire
Part of the Methods in Molecular Biology book series (MIMB, volume 1403)

Abstract

There are many avenues for making an effective vaccine against viruses. Depending on the virus these can include one of the following: inactivation of whole virions; attenuation of viruses; recombinant viral proteins; non-replication-competent virus particles; or surrogate virus vector systems such as vesicular stomatitis virus (VSV). VSV is a prototypic enveloped animal virus that has been used for over four decades to study virus replication, entry, and assembly due to its ability to replicate to high titers in a wide variety of mammalian and insect cells. The use of reverse genetics to recover infectious and single-cycle replicating VSV from plasmid DNA transfected in cell culture began a revolution in the study of recombinant VSV (rVSV). This platform can be manipulated to study the viral genetic sequences and proteins important in the virus life cycle. Additionally, foreign genes can be inserted between naturally occurring or generated start/stop signals and polyadenylation sites within the VSV genome. VSV has a tolerance for foreign gene expression which has led to numerous rVSVs reported in the literature. Of particular interest are the very effective single-dose rVSV vaccine vectors against high-containment viruses such as filoviruses, henipaviruses, and arenaviruses. Herein we describe the methods for selecting foreign antigenic genes, selecting the location within the VSV genome for insertion, generation of rVSV using reverse genetics, and proper vaccine study designs.

Key words

Vaccine Single-injection Immunity Vesicular stomatitis virus Ebola virus Marburg virus Filovirus Nipah virus Henipavirus Lassa virus Arenavirus Glycoprotein Fusion protein Attachment protein Guinea pig Ferret Nonhuman primate 

Notes

Acknowledgements

Funding to T.W.G. for rVSV vaccine vectors presented was as follows: DHHS/NIH U01 AI082197; U01 AI082121; and R01 AI09881701.

References

  1. 1.
    Letchworth GJ, Rodriguez LL, Del Cbarrera J (1999) Vesicular stomatitis. Vet J 157:239–260CrossRefPubMedGoogle Scholar
  2. 2.
    Fields BN, Hawkins K (1967) Human infection with the virus of vesicular stomatitis during an epizootic. N Engl J Med 277:989–994CrossRefPubMedGoogle Scholar
  3. 3.
    Lawson ND, Stillman EA, Whitt MA, Rose JK (1995) Recombinant vesicular stomatitis viruses from DNA. Proc Natl Acad Sci U S A 92:4477–4481CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Whelan SP, Ball LA, Barr JN, Wertz GT (1995) Efficient recovery of infectious vesicular stomatitis virus entirely from cDNA clones. Proc Natl Acad Sci U S A 92:8388–8392CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Barr JN, Whelan SP, Wertz GW (1997) Role of the intergenic dinucleotide in vesicular stomatitis virus RNA transcription. J Virol 71:1794–1801PubMedPubMedCentralGoogle Scholar
  6. 6.
    Stillman EA, Whitt MA (1997) Mutational analyses of the intergenic dinucleotide and the transcriptional start sequence of vesicular stomatitis virus (VSV) define sequences required for efficient termination and initiation of VSV transcripts. J Virol 71:2127–2137PubMedPubMedCentralGoogle Scholar
  7. 7.
    Stillman EA, Whitt MA (1998) The length and sequence composition of vesicular stomatitis virus intergenic regions affect mRNA levels and the site of transcript initiation. J Virol 72:5565–5572PubMedPubMedCentralGoogle Scholar
  8. 8.
    Whelan SP, Barr JN, Wertz GW (2000) Identification of a minimal size requirement for termination of vesicular stomatitis virus mRNA: implications for the mechanism of transcription. J Virol 74:8268–8276CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Li T, Pattnaik AK (1999) Overlapping signals for transcription and replication at the 3′ terminus of the vesicular stomatitis virus genome. J Virol 73:444–452PubMedPubMedCentralGoogle Scholar
  10. 10.
    Das SC, Nayak D, Zhou Y, Pattnaik AK (2006) Visualization of intracellular transport of vesicular stomatitis virus nucleocapsids in living cells. J Virol 80:6368–6377CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fredericksen BL, Whitt MA (1995) Vesicular stomatitis virus glycoprotein mutations that affect membrane fusion activity and abolish virus infectivity. J Virol 69:1435–1443PubMedPubMedCentralGoogle Scholar
  12. 12.
    Fredericksen BL, Whitt MA (1996) Mutations at two conserved acidic amino acids in the glycoprotein of vesicular stomatitis virus affect pH-dependent conformational changes and reduce the pH threshold for membrane fusion. Virology 217:49–57CrossRefPubMedGoogle Scholar
  13. 13.
    Harty RN, Brown ME, McGettigan JP, Wang G, Jayakar HR, Huibregtse JM, Whitt MA, Schnell MJ (2001) Rhabdoviruses and the cellular ubiquitin-proteasome system: a budding interaction. J Virol 75:10623–10629CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Jayakar HR, Murti KG, Whitt MA (2000) Mutations in the PPPY motif of vesicular stomatitis virus matrix protein reduce virus budding by inhibiting a late step in virion release. J Virol 74:9818–9827CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Jayakar HR, Whitt MA (2002) Identification of two additional translation products from the matrix (M) gene that contribute to vesicular stomatitis virus cytopathology. J Virol 76:8011–8018CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Jeetendra E, Ghosh K, Odell D, Li J, Ghosh HP, Whitt MA (2003) The membrane-proximal region of vesicular stomatitis virus glycoprotein G ectodomain is critical for fusion and virus infectivity. J Virol 77:12807–12818CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mire CE, White JM, Whitt MA (2010) A spatio-temporal analysis of matrix protein and nucleocapsid trafficking during vesicular stomatitis virus uncoating. PLoS Pathog 6, e1000994CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mire CE, Whitt MA (2011) The protease-sensitive loop of the vesicular stomatitis virus matrix protein is involved in virus assembly and protein translation. Virology 416:16–25CrossRefPubMedGoogle Scholar
  19. 19.
    Huang JW, Davey MW, Hejna CJ, Von Muenchhausen W, Sulkowski E, Carter WA (1974) Selective binding of human interferon to albumin immoblized on agarose. J Biol Chem 249:4665–4667PubMedGoogle Scholar
  20. 20.
    Weiss RA, Boettiger D, Murphy HM (1977) Pseudotypes of avian sarcoma viruses with the envelope properties of vesicular stomatitis virus. Virology 76:808–825CrossRefPubMedGoogle Scholar
  21. 21.
    Witte ON, Baltimore D (1977) Mechanism of formation of pseudotypes between vesicular stomatitis virus and murine leukemia virus. Cell 11:505–511CrossRefPubMedGoogle Scholar
  22. 22.
    Zavada J, Rosenbergova M (1972) Phenotypic mixing of vesicular stomatitis virus with fowl plague virus. Acta Virol 16:103–114PubMedGoogle Scholar
  23. 23.
    Jayakar HR, Jeetendra E, Whitt MA (2004) Rhabdovirus assembly and budding. Virus Res 106:117–132CrossRefPubMedGoogle Scholar
  24. 24.
    Schnell MJ, Johnson JE, Buonocore L, Rose JK (1997) Construction of a novel virus that targets HIV-1-infected cells and controls HIV-1 infection. Cell 90:849–857CrossRefPubMedGoogle Scholar
  25. 25.
    Takada A, Robison C, Goto H, Sanchez A, Murti KG, Whitt MA, Kawaoka Y (1997) A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci U S A 94:14764–14769CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Robison CS, Whitt MA (2000) The membrane-proximal stem region of vesicular stomatitis virus G protein confers efficient virus assembly. J Virol 74:2239–2246CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Jones SM, Feldmann H, Stroher U, Geisbert JB, Fernando L et al (2005) Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nat Med 11:786–790CrossRefPubMedGoogle Scholar
  28. 28.
    Lo MK, Bird BH, Chattopadhyay A, Drew CP, Martin BE et al (2013) Single-dose replication-defective VSV-based Nipah virus vaccines provide protection from lethal challenge in Syrian hamsters. Antiviral Res 101:26–29CrossRefPubMedGoogle Scholar
  29. 29.
    Mire CE, Matassov D, Geisbert JB, Latham TE, Agans KN et al (2015) Single-dose attenuated Vesiculovax vaccines protect primates against Ebola Makona virus. Nature 520:688–691PubMedPubMedCentralGoogle Scholar
  30. 30.
    Mire CE, Versteeg KM, Cross RW, Agans KN, Fenton KA, Whitt MA, Geisbert TW (2013) Single injection recombinant vesicular stomatitis virus vaccines protect ferrets against lethal Nipah virus disease. Virol J 10:353CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Marzi A, Ebihara H, Callison J, Groseth A, Williams KJ, Geisbert TW, Feldmann H (2011) Vesicular stomatitis virus-based Ebola vaccines with improved cross-protective efficacy. J Infect Dis 204(Suppl 3):S1066–S1074CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Safronetz D, Mire C, Rosenke K, Feldmann F, Haddock E, Geisbert T, Feldmann H (2015) A recombinant vesicular stomatitis virus-based Lassa fever vaccine protects guinea pigs and macaques against challenge with geographically and genetically distinct Lassa viruses. PLoS Negl Trop Dis 9, e0003736CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Matassov D, Marzi A, Latham T, Xu R, Ota-Setlik A et al (2015) Vaccination with a highly attenuated recombinant vesicular stomatitis virus vector protects against challenge with a lethal dose of ebola virus. J Infect Dis pii: jiv316. [Epub ahead of print] PubMed PMID: 26109675.Google Scholar
  34. 34.
    Mire CE, Geisbert JB, Versteeg KM, Mamaeva N, Agans KN, Geisbert TW, Connor JH (2015) A single-vector, single-injection trivalent filovirus vaccine: proof of concept study in outbred guinea pigs. J Infect Dis pii: jiv126. [Epub ahead of print] PubMed PMID: 25957964.Google Scholar
  35. 35.
    Kaariainen L, Gomatos PJ (1969) A kinetic analysis of the synthesis in BHK 21 cells of RNAs specific for Semliki Forest virus. J Gen Virol 5:251–265CrossRefPubMedGoogle Scholar
  36. 36.
    Porotto M, Carta P, Deng Y, Kellogg GE, Whitt M, Lu M, Mungall BA, Moscona A (2007) Molecular determinants of antiviral potency of paramyxovirus entry inhibitors. J Virol 81:10567–10574CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Whitt MA (2010) Generation of VSV pseudotypes using recombinant DeltaG-VSV for studies on virus entry, identification of entry inhibitors, and immune responses to vaccines. J Virol Methods 169:365–374CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Stillman EA, Rose JK, Whitt MA (1995) Replication and amplification of novel vesicular stomatitis virus minigenomes encoding viral structural proteins. J Virol 69:2946–2953PubMedPubMedCentralGoogle Scholar
  39. 39.
    Neumann G, Feldmann H, Watanabe S, Lukashevich I, Kawaoka Y (2002) Reverse genetics demonstrates that proteolytic processing of the Ebola virus glycoprotein is not essential for replication in cell culture. J Virol 76:406–410CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Jeetendra E, Robison CS, Albritton LM, Whitt MA (2002) The membrane-proximal domain of vesicular stomatitis virus G protein functions as a membrane fusion potentiator and can induce hemifusion. J Virol 76:12300–12311CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Fuerst TR, Niles EG, Studier FW, Moss B (1986) Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A 83:8122–8126CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Wyatt LS, Moss B, Rozenblatt S (1995) Replication-deficient vaccinia virus encoding bacteriophage T7 RNA polymerase for transient gene expression in mammalian cells. Virology 210:202–205CrossRefPubMedGoogle Scholar
  43. 43.
    Buchholz UJ, Finke S, Conzelmann KK (1999) Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol 73:251–259PubMedPubMedCentralGoogle Scholar
  44. 44.
    Harty RN, Brown ME, Hayes FP, Wright NT, Schnell MJ (2001) Vaccinia virus-free recovery of vesicular stomatitis virus. J Mol Microbiol Biotechnol 3:513–517PubMedGoogle Scholar
  45. 45.
    Rose JK, Buonocore L, Whitt MA (1991) A new cationic liposome reagent mediating nearly quantitative transfection of animal cells. Biotechniques 10:520–525PubMedGoogle Scholar
  46. 46.
    Garbutt M, Liebscher R, Wahl-Jensen V, Jones S et al (2004) Properties of replication-competent vesicular stomatitis virus vectors expressing glycoproteins of filoviruses and arenaviruses. J Virol 78:5458–5465CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Roberts R, McCune SK (2008) Animal studies in the development of medical countermeasures. Clin Pharmacol Ther 83:918–920CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Michael A. Whitt
    • 1
  • Thomas W. Geisbert
    • 2
    • 3
  • Chad E. Mire
    • 2
    • 3
  1. 1.Department of Microbiology, Immunology, and BiochemistryUniversity of Tennessee Health Science CenterMemphisUSA
  2. 2.Galveston National LaboratoryUniversity of Texas Medical BranchGalvestonUSA
  3. 3.Department of Microbiology and ImmunologyUniversity of Texas Medical BranchGalvestonUSA

Personalised recommendations