Long Noncoding RNA Expression Profiling Using Arraystar LncRNA Microarrays

  • Yanggu ShiEmail author
  • Jindong Shang
Part of the Methods in Molecular Biology book series (MIMB, volume 1402)


Arraystar LncRNA microarrays are designed for global gene expression profiling of both LncRNAs and mRNAs on the same array. The array contents feature comprehensive collections of LncRNAs and include entire sets of known coding mRNAs. Each RNA transcript is detected by a splice junction-specific probe or a unique exon sequence, such that the alternatively spliced transcript isoforms or variants are reliably and accurately detected. The highly optimized experimental protocols and efficient workflow ensure sensitive, robust, and accurate microarray data generation. Standard data analyses are provided for microarray raw data processing, data quality control, gene expression clustering and heat map visualization, differentially expressed LncRNAs and mRNAs, LncRNA subcategories, regulatory relationships of LncRNAs with the mRNAs, gene ontology, and pathway analysis. The LncRNA microarrays are powerful tools for the study of LncRNAs in biology and disease, with broad applications in gene expression profiling, gene regulatory mechanism research, LncRNA functional discovery, and biomarker development.

Key words

Long noncoding RNA LncRNA lincRNA Microarray Gene expression profiling 


  1. 1.
    Cabili MN, Trapnell C, Goff L et al (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Derrien T, Johnson R, Bussotti G et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Batista PJ, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152:1298–1307CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kung JT, Colognori D, Lee JT (2013) Long noncoding RNAs: past, present, and future. Genetics 193:651–669CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159CrossRefPubMedGoogle Scholar
  6. 6.
    Amaral PP, Clark MB, Gascoigne DK et al (2011) LncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res 39:D146–D151CrossRefPubMedGoogle Scholar
  7. 7.
    Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15:7–21CrossRefPubMedGoogle Scholar
  8. 8.
    Kornienko AE, Guenzl PM, Barlow DP et al (2013) Gene regulation by the act of long non-coding RNA transcription. BMC Biol 11:59CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Nie L, Wu HJ, Hsu JM et al (2012) Long non-coding RNAs: versatile master regulators of gene expression and crucial players in cancer. Am J Transl Res 4:127–150PubMedPubMedCentralGoogle Scholar
  10. 10.
    Lee JT (2012) Epigenetic regulation by long noncoding RNAs. Science 338:1435–1439CrossRefPubMedGoogle Scholar
  11. 11.
    Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21:354–361CrossRefPubMedGoogle Scholar
  13. 13.
    Chen G, Wang Z, Wang D et al (2013) LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res 41:D983–D986CrossRefPubMedGoogle Scholar
  14. 14.
    Taft RJ, Pang KC, Mercer TR et al (2010) Non-coding RNAs: regulators of disease. J Pathol 220:126–139CrossRefPubMedGoogle Scholar
  15. 15.
    Broadbent HM, Peden JF, Lorkowski S et al (2008) Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. Hum Mol Genet 17:806–814CrossRefPubMedGoogle Scholar
  16. 16.
    Scheuermann JC, Boyer LA (2013) Getting to the heart of the matter: long non-coding RNAs in cardiac development and disease. EMBO J 32:1805–1816CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Gomez JA, Wapinski OL, Yang YW et al (2013) The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-gamma locus. Cell 152:743–754CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cabianca DS, Casa V, Bodega B et al (2012) A long ncRNA links copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy. Cell 149:819–831CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sana J, Faltejskova P, Svoboda M et al (2012) Novel classes of non-coding RNAs and cancer. J Transl Med 10:103CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gutschner T, Diederichs S (2012) The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 9:703–719CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Han P, Li W, Lin CH et al (2014) A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514:102–106CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kumarswamy R, Bauters C, Volkmann I et al (2014) Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ Res 114:1569–1575CrossRefPubMedGoogle Scholar
  23. 23.
    Xu W, Seok J, Mindrinos MN et al (2011) Human transcriptome array for high-throughput clinical studies. Proc Natl Acad Sci U S A 108:3707–3712CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kampa D, Cheng J, Kapranov P et al (2004) Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Res 14:331–342CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Cawley S, Bekiranov S, Ng HH et al (2004) Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116:499–509CrossRefPubMedGoogle Scholar
  26. 26.
    Ravasi T, Suzuki H, Pang KC et al (2006) Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res 16:11–19CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Guttman M, Garber M, Levin JZ et al (2010) Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 28:503–510CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yan L, Yang M, Guo H et al (2013) Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 20(9):1131–1139CrossRefPubMedGoogle Scholar
  29. 29.
    Jiang L, Schlesinger F, Davis CA et al (2011) Synthetic spike-in standards for RNA-seq experiments. Genome Res 21:1543–1551CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Labaj PP, Leparc GG, Linggi BE et al (2011) Characterization and improvement of RNA-Seq precision in quantitative transcript expression profiling. Bioinformatics 27:i383–i391CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Toung JM, Morley M, Li M et al (2011) RNA-sequence analysis of human B-cells. Genome Res 21:991–998CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kretz M, Webster DE, Flockhart RJ et al (2012) Suppression of progenitor differentiation requires the long noncoding RNA ANCR. Genes Dev 26:338–343CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Steijger T, Abril JF, Engstrom PG et al (2013) Assessment of transcript reconstruction methods for RNA-seq. Nat Methods 10:1177–1184CrossRefPubMedGoogle Scholar
  34. 34.
    King C, Guo N, Frampton GM et al (2005) Reliability and reproducibility of gene expression measurements using amplified RNA from laser-microdissected primary breast tissue with oligonucleotide arrays. J Mol Diagn 7:57–64CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Li L, Roden J, Shapiro BE et al (2005) Reproducibility, fidelity, and discriminant validity of mRNA amplification for microarray analysis from primary hematopoietic cells. J Mol Diagn 7:48–56CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Klur S, Toy K, Williams MP et al (2004) Evaluation of procedures for amplification of small-size samples for hybridization on microarrays. Genomics 83:508–517CrossRefPubMedGoogle Scholar
  37. 37.
    Wilson CL, Pepper SD, Hey Y et al (2004) Amplification protocols introduce systematic but reproducible errors into gene expression studies. Biotechniques 36:498–506PubMedGoogle Scholar
  38. 38.
    Pavlidis P, Li Q, Noble WS (2003) The effect of replication on gene expression microarray experiments. Bioinformatics 19:1620–1627CrossRefPubMedGoogle Scholar
  39. 39.
    Bolstad BM, Irizarry RA, Astrand M et al (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193CrossRefPubMedGoogle Scholar
  40. 40.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300Google Scholar
  41. 41.
    Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article3Google Scholar
  42. 42.
    Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Arraystar Inc.RockvilleUSA

Personalised recommendations