Skip to main content

Characterization of Long Noncoding RNA-Associated Proteins by RNA-Immunoprecipitation

  • Protocol
  • First Online:
Book cover Long Non-Coding RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1402))

Abstract

With the advances in sequencing technology and transcriptome analysis, it is estimated that up to 75 % of the human genome is transcribed into RNAs. This finding prompted intensive investigations on the biological functions of noncoding RNAs and led to very exciting discoveries of microRNAs as important players in disease pathogenesis and therapeutic applications. Research on long noncoding RNAs (lncRNAs) is in its infancy; yet a broad spectrum of biological regulations has been attributed to lncRNAs. RNA-immunoprecipitation (RNA-IP) is a technique of detecting the association of individual proteins with specific RNA molecules in vivo. It can be used to investigate lncRNA-protein interaction and identify lncRNAs that bind to a protein of interest. Here we describe the protocol of this assay with detailed materials and methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166

    Article  CAS  PubMed  Google Scholar 

  2. Lee JT (2012) Epigenetic regulation by long noncoding RNAs. Science 338:1435–1439

    Article  CAS  PubMed  Google Scholar 

  3. Prensner JR, Chinnaiyan AM (2011) The emergence of lncRNAs in cancer biology. Cancer Discov 1:391–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482:339–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Spizzo R, Almeida MI, Colombatti A, Calin GA (2012) Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene 31:4577–4587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A et al (2012) Landscape of transcription in human cells. Nature 489:101–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pachnis V, Brannan CI, Tilghman SM (1988) The structure and expression of a novel gene activated in early mouse embryogenesis. EMBO J 7:673–681

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bartolomei MS, Zemel S, Tilghman SM (1991) Parental imprinting of the mouse H19 gene. Nature 351:153–155

    Article  CAS  PubMed  Google Scholar 

  9. Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M, Tonlorenzi R et al (1991) A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349:38–44

    Article  CAS  PubMed  Google Scholar 

  10. Kapranov P, Cawley SE, Drenkow J, Bekiranov S, Strausberg RL, Fodor SP et al (2002) Large-scale transcriptional activity in chromosomes 21 and 22. Science 296:916–919

    Article  CAS  PubMed  Google Scholar 

  11. Rinn JL, Euskirchen G, Bertone P, Martone R, Luscombe NM, Hartman S et al (2003) The transcriptional activity of human Chromosome 22. Genes Dev 17:529–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D et al (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 106:11667–11672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maeda N, Kasukawa T, Oyama R, Gough J, Frith M, Engstrom PG et al (2006) Transcript annotation in FANTOM3: mouse gene catalog based on physical cDNAs. PLoS Genet 2:e62

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jia H, Osak M, Bogu GK, Stanton LW, Johnson R, Lipovich L (2010) Genome-wide computational identification and manual annotation of human long noncoding RNA genes. RNA 16:1478–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Orom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G et al (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell 143:46–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Prensner JR, Iyer MK, Balbin OA, Dhanasekaran SM, Cao Q, Brenner JC et al (2011) Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol 29:742–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A et al (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brown CJ, Hendrich BD, Rupert JL, Lafreniere RG, Xing Y, Lawrence J et al (1992) The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71:527–542

    Article  CAS  PubMed  Google Scholar 

  23. Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322:750–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jeon Y, Lee JT (2011) YY1 tethers Xist RNA to the inactive X nucleation center. Cell 146:119–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F et al (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329:689–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yap KL, Li S, Munoz-Cabello AM, Raguz S, Zeng L, Mujtaba S et al (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 38:662–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M et al (2011) Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 30:1956–1962

    Article  CAS  PubMed  Google Scholar 

  28. Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D et al (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142:409–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grote P, Wittler L, Hendrix D, Koch F, Wahrisch S, Beisaw A et al (2013) The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 24:206–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP (2010) Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 3:ra8

    PubMed  PubMed Central  Google Scholar 

  31. Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD et al (2011) Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 43:621–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT et al (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39:925–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bernard D, Prasanth KV, Tripathi V, Colasse S, Nakamura T, Xuan Z et al (2010) A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J 29:3082–3093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tripathi V, Shen Z, Chakraborty A, Giri S, Freier SM, Wu X et al (2013) Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet 9:e1003368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146:353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J et al (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465:182–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang D, Garcia-Bassets I, Benner C, Li W, Su X, Zhou Y et al (2011) Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474:390–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Melo CA, Drost J, Wijchers PJ, van de Werken H, de Wit E, Oude Vrielink JA et al (2013) eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol Cell 49:524–535

    Article  CAS  PubMed  Google Scholar 

  39. Lai F, Orom UA, Cesaroni M, Beringer M, Taatjes DJ, Blobel GA et al (2013) Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature 494:497–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported, in whole or in part, by the Basser Research Center for BRCA, the NIH (R01CA142776, R01CA190415, P50CA083638, P50CA174523), the Ovarian Cancer Research Fund (XH), the Breast Cancer Alliance, Foundation for Women’s Cancer (XH), and the Marsha Rivkin Center for Ovarian Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zhang, Y. et al. (2016). Characterization of Long Noncoding RNA-Associated Proteins by RNA-Immunoprecipitation. In: Feng, Y., Zhang, L. (eds) Long Non-Coding RNAs. Methods in Molecular Biology, vol 1402. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3378-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3378-5_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3376-1

  • Online ISBN: 978-1-4939-3378-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics