Advertisement

Targeting Long Noncoding RNA with Antisense Oligonucleotide Technology as Cancer Therapeutics

  • Tianyuan ZhouEmail author
  • Youngsoo Kim
  • A. Robert MacLeod
Part of the Methods in Molecular Biology book series (MIMB, volume 1402)

Abstract

Recent annotation of the human transcriptome revealed that only 2 % of the genome encodes proteins while the majority of human genome is transcribed into noncoding RNAs. Although we are just beginning to understand the diverse roles long noncoding RNAs (lncRNAs) play in molecular and cellular processes, they have potentially important roles in human development and pathophysiology. However, targeting of RNA by traditional structure-based design of small molecule inhibitors has been difficult, due to a lack of understanding of the dynamic tertiary structures most RNA molecules adopt. Antisense oligonucleotides (ASOs) are capable of targeting specific genes or transcripts directly through Watson–Crick base pairing and thus can be designed based on sequence information alone. These agents have made possible specific targeting of “non-druggable targets” including RNA molecules. Here we describe how ASOs can be applied in preclinical studies to reduce levels of lncRNAs of interest.

Key words

Antisense oligonucleotide Control ASO Non-druggable targets Off-target RNA therapeutics Target reduction RNase H qRT-PCR Transfection Free uptake 

Notes

Acknowledgements

We thank XueHai Liang for discussion and sharing unpublished data. We are grateful to Lauren Elder for editorial assistance.

References

  1. 1.
    Rask-Andersen M, Almen MS, Schioth HB (2011) Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 10:579–590CrossRefPubMedGoogle Scholar
  2. 2.
    Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996CrossRefPubMedGoogle Scholar
  3. 3.
    Bennett CF, Swayze EE (2010) RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol 50:259–293CrossRefPubMedGoogle Scholar
  4. 4.
    Yamamoto Y, Loriot Y, Beraldi E, Zhang F, Wyatt AW, Al Nakouzi N et al (2015) Generation 2.5 antisense oligonucleotides targeting the androgen receptor and its splice variants suppress enzalutamide resistant prostate cancer cell growth. Clin Cancer Res 21:1675–1687CrossRefPubMedGoogle Scholar
  5. 5.
    Lam MT, Cho H, Lesch HP, Gosselin D, Heinz S, Tanaka-Oishi Y et al (2013) Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature 498:511–515CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Meng L, Ward AJ, Chun S, Bennett CF, Beaudet al, Rigo F (2014) Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature 518(7539):409–12Google Scholar
  7. 7.
    Wheeler TM, Leger AJ, Pandey SK, MacLeod AR, Nakamori M, Cheng SH et al (2012) Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature 488:111–115CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sauvageau M, Goff LA, Lodato S, Bonev B, Groff AF, Gerhardinger C et al (2013) Multiple knockout mouse models reveal lincRNAs are required for life and brain development. ELife 2:e01749CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Li L, Chang HY (2014) Physiological roles of long noncoding RNAs: insight from knockout mice. Trends Cell Biol 24:594–602CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21:354–361CrossRefPubMedGoogle Scholar
  11. 11.
    Li X, Wu Z, Fu X, Han W (2014) lncRNAs: insights into their function and mechanics in underlying disorders. Mutat Res Rev Mutat Res 762:1–21CrossRefPubMedGoogle Scholar
  12. 12.
    Meister G (2013) Argonaute proteins: functional insights and emerging roles. Nat Rev Genet 14:447–459CrossRefPubMedGoogle Scholar
  13. 13.
    Cerritelli SM, Frolova EG, Feng C, Grinberg A, Love PE, Crouch RJ (2003) Failure to produce mitochondrial DNA results in embryonic lethality in RNaseh1 null mice. Mol Cell 11:807–815CrossRefPubMedGoogle Scholar
  14. 14.
    Wu H, Lima WF, Zhang H, Fan A, Sun H, Crooke ST (2004) Determination of the role of the human RNase H1 in the pharmacology of DNA-like antisense drugs. J Biol Chem 279:17181–17189CrossRefPubMedGoogle Scholar
  15. 15.
    Lee RG, Crosby J, Baker BF, Graham MJ, Crooke RM (2013) Antisense technology: an emerging platform for cardiovascular disease therapeutics. J Cardiovasc Transl Res 6:969–980CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Buller HR, Bethune C, Bhanot S, Gailani D, Monia BP, Raskob GE et al (2015) Factor XI antisense oligonucleotide for prevention of venous thrombosis. N Engl J Med 372:232–240CrossRefPubMedGoogle Scholar
  17. 17.
    Gaudet D, Brisson D, Tremblay K, Alexander VJ, Singleton W, Hughes SG et al (2014) Targeting APOC3 in the familial chylomicronemia syndrome. N Engl J Med 371:2200–2206CrossRefPubMedGoogle Scholar
  18. 18.
    Rigo F, Seth PP, Bennett CF (2014) Antisense oligonucleotide-based therapies for diseases caused by pre-mRNA processing defects. Adv Exp Med Biol 825:303–352CrossRefPubMedGoogle Scholar
  19. 19.
    Rigo F, Chun SJ, Norris DA, Hung G, Lee S, Matson J et al (2014) Pharmacology of a central nervous system delivered 2′-O-methoxyethyl-modified survival of motor neuron splicing oligonucleotide in mice and nonhuman primates. J Pharmacol Exp Ther 350:46–55CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Vickers TA, Wyatt JR, Burckin T, Bennett CF, Freier SM (2001) Fully modified 2′ MOE oligonucleotides redirect polyadenylation. Nucleic Acids Res 29:1293–1299CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Baek MS, Yu RZ, Gaus H, Grundy JS, Geary RS (2010) In vitro metabolic stabilities and metabolism of 2′-O-(methoxyethyl) partially modified phosphorothioate antisense oligonucleotides in preincubated rat or human whole liver homogenates. Oligonucleotides 20:309–316CrossRefPubMedGoogle Scholar
  22. 22.
    Henry SP, Geary RS, Yu R, Levin AA (2001) Drug properties of second-generation antisense oligonucleotides: how do they measure up to their predecessors? Current Opin Investig Drugs 2:1444–1449Google Scholar
  23. 23.
    Monia BP, Lesnik EA, Gonzalez C, Lima WF, McGee D, Guinosso CJ et al (1993) Evaluation of 2′-modified oligonucleotides containing 2′-deoxy gaps as antisense inhibitors of gene expression. J Biol Chem 268:14514–14522PubMedGoogle Scholar
  24. 24.
    Prakash TP (2011) An overview of sugar-modified oligonucleotides for antisense therapeutics. Chem Biodivers 8:1616–1641CrossRefPubMedGoogle Scholar
  25. 25.
    Geary RS, Watanabe TA, Truong L, Freier S, Lesnik EA, Sioufi NB et al (2001) Pharmacokinetic properties of 2′-O-(2-methoxyethyl)-modified oligonucleotide analogs in rats. J Pharmacol Exp Ther 296:890–897PubMedGoogle Scholar
  26. 26.
    Lee RG, Fu W, Graham MJ, Mullick AE, Sipe D, Gattis D et al (2013) Comparison of the pharmacological profiles of murine antisense oligonucleotides targeting apolipoprotein B and microsomal triglyceride transfer protein. J Lipid Res 54:602–614CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Seth PP, Vasquez G, Allerson CA, Berdeja A, Gaus H, Kinberger GA et al (2010) Synthesis and biophysical evaluation of 2′,4′-constrained 2′O-methoxyethyl and 2′,4′-constrained 2′O-ethyl nucleic acid analogues. J Org Chem 75:1569–1581CrossRefPubMedGoogle Scholar
  28. 28.
    Hong DS, Kurzrock R, Kim Y, Woessner R, Younes A, Nemunaitis J, Fowler N, Zhou T, Schmidt J, Jo M, LeeSJ, Yamashita M, Hughes SG, Fayad L, Piha-Paul S, Nadella MVP, Mohseni M, Lawson D, Reimer C, Blakey DC, Xiao X, Hsu J, Monia BP, and MacLeod AR (2015). AZD9150, a nextgeneration antisense oligonucleotide Inhibitor of STAT3, with early evidence of clinical activity in lymphoma and lung cancer. Sci Transl Med (in press)Google Scholar
  29. 29.
    Senn JJ, Burel S, Henry SP (2005) Non-CpG-containing antisense 2′-methoxyethyl oligonucleotides activate a proinflammatory response independent of Toll-like receptor 9 or myeloid differentiation factor 88. J Pharmacol Exp Ther 314:972–979CrossRefPubMedGoogle Scholar
  30. 30.
    Lima WF, Vickers TA, Nichols J, Li C, Crooke ST (2014) Defining the factors that contribute to on-target specificity of antisense oligonucleotides. PLoS One 9:e101752CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Gutschner T, Hammerle M, Eissmann M, Hsu J, Kim Y, Hung G et al (2013) The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res 73:1180–1189CrossRefPubMedGoogle Scholar
  32. 32.
    Hung G, Xiao X, Peralta R, Bhattacharjee G, Murray S, Norris D et al (2013) Characterization of target mRNA reduction through in situ RNA hybridization in multiple organ systems following systemic antisense treatment in animals. Nucleic Acid Ther 23:369–378CrossRefPubMedGoogle Scholar
  33. 33.
    Vickers TA, Freier SM, Bui HH, Watt A, Crooke ST (2014) Targeting of repeated sequences unique to a gene results in significant increases in antisense oligonucleotide potency. PLoS One 9:e110615CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Skotte NH, Southwell AL, Ostergaard ME, Carroll JB, Warby SC, Doty CN et al (2014) Allele-specific suppression of mutant huntingtin using antisense oligonucleotides: providing a therapeutic option for all Huntington disease patients. PLoS One 9:e107434CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ostergaard ME, Southwell AL, Kordasiewicz H, Watt AT, Skotte NH, Doty CN et al (2013) Rational design of antisense oligonucleotides targeting single nucleotide polymorphisms for potent and allele selective suppression of mutant Huntingtin in the CNS. Nucleic Acids Res 41:9634–9650CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Castro D, Iannaccone ST (2014) Spinal muscular atrophy: therapeutic strategies. Curr Treat Options Neurol 16:316CrossRefPubMedGoogle Scholar
  37. 37.
    Ward AJ, Norrbom M, Chun S, Bennett CF, Rigo F (2014) Nonsense-mediated decay as a terminating mechanism for antisense oligonucleotides. Nucleic Acids Res 42:5871–5879CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Cavaluzzi MJ, Borer PN (2004) Revised UV extinction coefficients for nucleoside-5′-monophosphates and unpaired DNA and RNA. Nucleic Acids Res 32:e13CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Koller E, Vincent TM, Chappell A, De S, Manoharan M, Bennett CF (2011) Mechanisms of single-stranded phosphorothioate modified antisense oligonucleotide accumulation in hepatocytes. Nucleic Acids Res 39:4795–4807CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Yu RZ, Grundy JS, Geary RS (2013) Clinical pharmacokinetics of second generation antisense oligonucleotides. Expert Opin Drug Metab Toxicol 9:169–182CrossRefPubMedGoogle Scholar
  41. 41.
    Yu RZ, Lemonidis KM, Graham MJ, Matson JE, Crooke RM, Tribble DL et al (2009) Cross-species comparison of in vivo PK/PD relationships for second-generation antisense oligonucleotides targeting apolipoprotein B-100. Biochem Pharmacol 77:910–919CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Tianyuan Zhou
    • 1
    Email author
  • Youngsoo Kim
    • 1
  • A. Robert MacLeod
    • 1
  1. 1.Antisense Drug Discovery, OncologyIsis Pharmaceuticals, IncCarlsbadUSA

Personalised recommendations