Skip to main content

Structural Biology of Nonribosomal Peptide Synthetases

  • Protocol
  • First Online:
Book cover Nonribosomal Peptide and Polyketide Biosynthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1401))

Abstract

The nonribosomal peptide synthetases are modular enzymes that catalyze synthesis of important peptide products from a variety of standard and non-proteinogenic amino acid substrates. Within a single module are multiple catalytic domains that are responsible for incorporation of a single residue. After the amino acid is activated and covalently attached to an integrated carrier protein domain, the substrates and intermediates are delivered to neighboring catalytic domains for peptide bond formation or, in some modules, chemical modification. In the final module, the peptide is delivered to a terminal thioesterase domain that catalyzes release of the peptide product. This multi-domain modular architecture raises questions about the structural features that enable this assembly line synthesis in an efficient manner. The structures of the core component domains have been determined and demonstrate insights into the catalytic activity. More recently, multi-domain structures have been determined and are providing clues to the features of these enzyme systems that govern the functional interaction between multiple domains. This chapter describes the structures of NRPS proteins and the strategies that are being used to assist structural studies of these dynamic proteins, including careful consideration of domain boundaries for generation of truncated proteins and the use of mechanism-based inhibitors that trap interactions between the catalytic and carrier protein domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marahiel MA, Stachelhaus T, Mootz HD (1997) Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev 97:2651–2674

    Article  CAS  PubMed  Google Scholar 

  2. Marahiel MA, Essen LO (2009) Chapter 13. Nonribosomal peptide synthetases mechanistic and structural aspects of essential domains. Methods Enzymol 458:337–351

    Article  CAS  PubMed  Google Scholar 

  3. Koglin A, Walsh CT (2009) Structural insights into nonribosomal peptide enzymatic assembly lines. Nat Prod Rep 26:987–1000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Mercer AC, Burkart MD (2007) The ubiquitous carrier protein--a window to metabolite biosynthesis. Nat Prod Rep 24:750–773

    Article  CAS  PubMed  Google Scholar 

  5. Beld J, Sonnenschein EC, Vickery CR et al (2014) The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Nat Prod Rep 31:61–108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Weber T, Baumgartner R, Renner C et al (2000) Solution structure of PCP, a prototype for the peptidyl carrier domains of modular peptide synthetases. Struct Fold Des 8:407–418

    Article  CAS  Google Scholar 

  7. Crosby J, Crump MP (2012) The structural role of the carrier protein--active controller or passive carrier. Nat Prod Rep 29:1111–1137

    Article  CAS  PubMed  Google Scholar 

  8. Lohman JR, Ma M, Cuff ME et al (2014) The crystal structure of BlmI as a model for nonribosomal peptide synthetase peptidyl carrier proteins. Proteins 82:1210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Koglin A, Mofid MR, Lohr F et al (2006) Conformational switches modulate protein interactions in peptide antibiotic synthetases. Science 312:273–276

    Article  CAS  PubMed  Google Scholar 

  10. Lai JR, Fischbach MA, Liu DR et al (2006) A protein interaction surface in nonribosomal peptide synthesis mapped by combinatorial mutagenesis and selection. Proc Natl Acad Sci U S A 103:5314–5319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Lai JR, Koglin A, Walsh CT (2006) Carrier protein structure and recognition in polyketide and nonribosomal peptide biosynthesis. Biochemistry 45:14869–14879

    Article  CAS  PubMed  Google Scholar 

  12. Gulick AM (2009) Conformational dynamics in the acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase. ACS Chem Biol 4:811–827

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Gulick AM, Starai VJ, Horswill AR et al (2003) The 1.75 A crystal structure of acetyl-CoA synthetase bound to adenosine-5′-propylphosphate and coenzyme A. Biochemistry 42:2866–2873

    Article  CAS  PubMed  Google Scholar 

  14. Reger AS, Wu R, Dunaway-Mariano D et al (2008) Structural characterization of a 140° domain movement in the two-step reaction catalyzed by 4-chlorobenzoate:CoA ligase. Biochemistry 47:8016–8025

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Wu R, Cao J, Lu X et al (2008) Mechanism of 4-chlorobenzoate:coenzyme a ligase catalysis. Biochemistry 47:8026–8039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Branchini BR, Murtiashaw MH, Magyar RA et al (2000) The role of lysine 529, a conserved residue of the acyl-adenylate- forming enzyme superfamily, in firefly luciferase. Biochemistry 39:5433–5440

    Article  CAS  PubMed  Google Scholar 

  17. Branchini BR, Southworth TL, Murtiashaw MH et al (2005) Mutagenesis evidence that the partial reactions of firefly bioluminescence are catalyzed by different conformations of the luciferase C-terminal domain. Biochemistry 44:1385–1393

    Article  CAS  PubMed  Google Scholar 

  18. Mootz HD, Marahiel MA (1999) Design and application of multimodular peptide synthetases. Curr Opin Biotechnol 10:341–348

    Article  CAS  PubMed  Google Scholar 

  19. Conti E, Stachelhaus T, Marahiel MA et al (1997) Structural basis for the activation of phenylalanine in the non- ribosomal biosynthesis of gramicidin S. EMBO J 16:4174–4183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. May JJ, Kessler N, Marahiel MA et al (2002) Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases. Proc Natl Acad Sci U S A 99:12120–12125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Hamoen LW, Eshuis H, Jongbloed J et al (1995) A small gene, designated comS, located within the coding region of the fourth amino acid-activation domain of srfA, is required for competence development in Bacillus subtilis. Mol Microbiol 15:55–63

    Article  CAS  PubMed  Google Scholar 

  22. Reger AS, Carney JM, Gulick AM (2007) Biochemical and crystallographic analysis of substrate binding and conformational changes in acetyl-CoA synthetase. Biochemistry 46:6536–6546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Gulick AM, Lu X, Dunaway-Mariano D (2004) Crystal structure of 4-chlorobenzoate:CoA ligase/synthetase in the unliganded and aryl substrate-bound states. Biochemistry 43:8670–8679

    Article  CAS  PubMed  Google Scholar 

  24. Wu R, Reger AS, Lu X et al (2009) The mechanism of domain alternation in the acyl-adenylate forming ligase superfamily member 4-chlorobenzoate: coenzyme A ligase. Biochemistry 48:4115–4125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Yonus H, Neumann P, Zimmermann S et al (2008) Crystal structure of DltA. Implications for the reaction mechanism of non-ribosomal peptide synthetase adenylation domains. J Biol Chem 283:32484–32491

    Article  CAS  PubMed  Google Scholar 

  26. Du L, He Y, Luo Y (2008) Crystal structure and enantiomer selection by D-alanyl carrier protein ligase DltA from Bacillus cereus. Biochemistry 47:11473–11480

    Article  CAS  PubMed  Google Scholar 

  27. Quadri LE (2000) Assembly of aryl-capped siderophores by modular peptide synthetases and polyketide synthases. Mol Microbiol 37:1–12

    Article  CAS  PubMed  Google Scholar 

  28. Sundlov JA, Gulick AM (2013) Structure determination of the functional domain interaction of a chimeric nonribosomal peptide synthetase from a challenging crystal with noncrystallographic translational symmetry. Acta Crystallogr D Biol Crystallogr 69:1482–1492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Sundlov JA, Shi C, Wilson DJ et al (2012) Structural and functional investigation of the intermolecular interaction between NRPS adenylation and carrier protein domains. Chem Biol 19:188–198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Drake EJ, Duckworth BP, Neres J et al (2010) Biochemical and structural characterization of bisubstrate inhibitors of BasE, the self-standing nonribosomal peptide synthetase adenylate-forming enzyme of acinetobactin synthesis. Biochemistry 49:9292–9305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Neres J, Engelhart CA, Drake EJ et al (2013) Non-nucleoside inhibitors of BasE, an adenylating enzyme in the siderophore biosynthetic pathway of the opportunistic pathogen Acinetobacter baumannii. J Med Chem 56:2385–2405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Baltz RH (2011) Function of MbtH homologs in nonribosomal peptide biosynthesis and applications in secondary metabolite discovery. J Ind Microbiol Biotechnol 38:1747–1760

    Article  CAS  PubMed  Google Scholar 

  33. Wolpert M, Gust B, Kammerer B et al (2007) Effects of deletions of mbtH-like genes on clorobiocin biosynthesis in Streptomyces coelicolor. Microbiology 153:1413–1423

    Article  CAS  PubMed  Google Scholar 

  34. Boll B, Taubitz T, Heide L (2011) Role of MbtH-like proteins in the adenylation of tyrosine during aminocoumarin and vancomycin biosynthesis. J Biol Chem 286:36281–36290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Felnagle EA, Barkei JJ, Park H et al (2010) MbtH-like proteins as integral components of bacterial nonribosomal peptide synthetases. Biochemistry 49:8815–8817

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Buchko GW, Kim CY, Terwilliger TC et al (2010) Solution structure of Rv2377c-founding member of the MbtH-like protein family. Tuberculosis (Edinb) 90:245–251

    Article  CAS  Google Scholar 

  37. Drake EJ, Cao J, Qu J et al (2007) The 1.8 A crystal structure of PA2412, an MbtH-like protein from the pyoverdine cluster of Pseudomonas aeruginosa. J Biol Chem 282:20425–20434

    Article  CAS  PubMed  Google Scholar 

  38. Herbst DA, Boll B, Zocher G et al (2013) Structural basis of the interaction of MbtH-like proteins, putative regulators of nonribosomal peptide biosynthesis, with adenylating enzymes. J Biol Chem 288:1991–2003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Zhang W, Heemstra JR Jr, Walsh CT et al (2010) Activation of the pacidamycin PacL adenylation domain by MbtH-like proteins. Biochemistry 49:9946–9947

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Zolova OE, Garneau-Tsodikova S (2012) Importance of the MbtH-like protein TioT for production and activation of the thiocoraline adenylation domain of TioK. Med Chem Commun 3:950–955

    Article  CAS  Google Scholar 

  41. Murray IA, Cann PA, Day PJ et al (1995) Steroid recognition by chloramphenicol acetyltransferase: engineering and structural analysis of a high affinity fusidic acid binding site. J Mol Biol 254:993–1005

    Article  CAS  PubMed  Google Scholar 

  42. Stachelhaus T, Mootz HD, Bergendahl V et al (1998) Peptide bond formation in nonribosomal peptide biosynthesis. Catalytic role of the condensation domain. J Biol Chem 273:22773–22781

    Article  CAS  PubMed  Google Scholar 

  43. Keating TA, Marshall CG, Walsh CT et al (2002) The structure of VibH represents nonribosomal peptide synthetase condensation, cyclization and epimerization domains. Nat Struct Biol 9:522–526

    CAS  PubMed  Google Scholar 

  44. Samel SA, Schoenafinger G, Knappe TA et al (2007) Structural and functional insights into a peptide bond-forming bidomain from a nonribosomal peptide synthetase. Structure 15:781–792

    Article  CAS  PubMed  Google Scholar 

  45. Tanovic A, Samel SA, Essen LO et al (2008) Crystal structure of the termination module of a nonribosomal peptide synthetase. Science 321:659–663

    Article  CAS  PubMed  Google Scholar 

  46. Bloudoff K, Rodionov D, Schmeing TM (2013) Crystal structures of the first condensation domain of CDA synthetase suggest conformational changes during the synthetic cycle of nonribosomal peptide synthetases. J Mol Biol 425:3137–3150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Lai JR, Fischbach MA, Liu DR et al (2006) Localized protein interaction surfaces on the EntB carrier protein revealed by combinatorial mutagenesis and selection. J Am Chem Soc 128:11002–11003

    Article  CAS  PubMed  Google Scholar 

  48. Bruner SD, Weber T, Kohli RM et al (2002) Structural basis for the cyclization of the lipopeptide antibiotic surfactin by the thioesterase domain SrfTE. Structure 10:301–310

    Article  CAS  PubMed  Google Scholar 

  49. Samel SA, Wagner B, Marahiel MA et al (2006) The thioesterase domain of the fengycin biosynthesis cluster: a structural base for the macrocyclization of a non-ribosomal lipopeptide. J Mol Biol 359:876–889

    Article  CAS  PubMed  Google Scholar 

  50. Walsh CT, Chen H, Keating TA et al (2001) Tailoring enzymes that modify nonribosomal peptides during and after chain elongation on NRPS assembly lines. Curr Opin Chem Biol 5:525–534

    Article  CAS  PubMed  Google Scholar 

  51. Patel HM, Tao J, Walsh CT (2003) Epimerization of an L-cysteinyl to a D-cysteinyl residue during thiazoline ring formation in siderophore chain elongation by pyochelin synthetase from Pseudomonas aeruginosa. Biochemistry 42:10514–10527

    Article  CAS  PubMed  Google Scholar 

  52. Perry RD, Fetherston JD (2011) Yersiniabactin iron uptake: mechanisms and role in Yersinia pestis pathogenesis. Microbes Infect 13:808–817

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Samel SA, Czodrowski P, Essen LO (2014) Structure of the epimerization domain of tyrocidine synthetase A. Acta Crystallogr D Biol Crystallogr 70:1442–1452

    Article  CAS  PubMed  Google Scholar 

  54. Stachelhaus T, Walsh CT (2000) Mutational analysis of the epimerization domain in the initiation module PheATE of gramicidin S synthetase. Biochemistry 39:5775–5787

    Article  CAS  PubMed  Google Scholar 

  55. Mitchell CA, Shi C, Aldrich CC et al (2012) Structure of PA1221, a nonribosomal peptide synthetase containing adenylation and peptidyl carrier protein domains. Biochemistry 51: 3252–3263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Cakici O, Sikorski M, Stepkowski T et al (2010) Crystal structures of NodS N-methyltransferase from Bradyrhizobium japonicum in ligand-free form and as SAH complex. J Mol Biol 404:874–889

    Article  CAS  PubMed  Google Scholar 

  57. Shi R, Lamb SS, Zakeri B et al (2009) Structure and function of the glycopeptide N-methyltransferase MtfA, a tool for the biosynthesis of modified glycopeptide antibiotics. Chem Biol 16:401–410

    Article  CAS  PubMed  Google Scholar 

  58. Chhabra A, Haque AS, Pal RK et al (2012) Nonprocessive [2 + 2]e- off-loading reductase domains from mycobacterial nonribosomal peptide synthetases. Proc Natl Acad Sci U S A 109:5681–5686

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Wyatt MA, Mok MC, Junop M et al (2012) Heterologous expression and structural characterisation of a pyrazinone natural product assembly line. Chembiochem 13:2408–2415

    Article  CAS  PubMed  Google Scholar 

  60. Frueh DP, Arthanari H, Koglin A et al (2008) Dynamic thiolation-thioesterase structure of a non-ribosomal peptide synthetase. Nature 454:903–906

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Liu Y, Zheng T, Bruner SD (2011) Structural basis for phosphopantetheinyl carrier domain interactions in the terminal module of nonribosomal peptide synthetases. Chem Biol 18:1482–1488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Drake EJ, Nicolai DA, Gulick AM (2006) Structure of the EntB multidomain nonribosomal peptide synthetase and functional analysis of its interaction with the EntE adenylation domain. Chem Biol 13:409–419

    Article  CAS  PubMed  Google Scholar 

  63. Lee TV, Johnson LJ, Johnson RD et al (2010) Structure of a eukaryotic nonribosomal peptide synthetase adenylation domain that activates a large hydroxamate amino acid in siderophore biosynthesis. J Biol Chem 285:2415–2427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Johnson LJ, Koulman A, Christensen M et al (2013) An extracellular siderophore is required to maintain the mutualistic interaction of Epichloe festucae with Lolium perenne. PLoS Pathog 9:e1003332

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Liu Y, Bruner SD (2007) Rational manipulation of carrier-domain geometry in nonribosomal peptide synthetases. Chembiochem 8:617–621

    Article  CAS  PubMed  Google Scholar 

  66. Ferreras JA, Ryu JS, Di Lello F et al (2005) Small-molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis. Nat Chem Biol 1:29–32

    Article  CAS  PubMed  Google Scholar 

  67. Somu RV, Boshoff H, Qiao C et al (2006) Rationally designed nucleoside antibiotics that inhibit siderophore biosynthesis of Mycobacterium tuberculosis. J Med Chem 49:31–34

    Article  CAS  PubMed  Google Scholar 

  68. Miethke M, Bisseret P, Beckering CL et al (2006) Inhibition of aryl acid adenylation domains involved in bacterial siderophore synthesis. FEBS J 273:409–419

    Article  CAS  PubMed  Google Scholar 

  69. Qiao C, Wilson DJ, Bennett EM et al (2007) A mechanism-based aryl carrier protein/thiolation domain affinity probe. J Am Chem Soc 129:6350–6351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Vannada J, Bennett EM, Wilson DJ et al (2006) Design, synthesis, and biological evaluation of b-ketosulfonamide adenylation inhibitors as potential antitubercular agents. Org Lett 8:4707–4710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research from our lab that is included in this review has been supported by the National Institutes of Health (GM-068440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Gulick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Miller, B.R., Gulick, A.M. (2016). Structural Biology of Nonribosomal Peptide Synthetases. In: Evans, B. (eds) Nonribosomal Peptide and Polyketide Biosynthesis. Methods in Molecular Biology, vol 1401. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3375-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3375-4_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3373-0

  • Online ISBN: 978-1-4939-3375-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics