Skip to main content

A Large-Scale Functional Screen to Identify Epigenetic Repressors of Retrotransposon Expression

  • Protocol
  • First Online:
Transposons and Retrotransposons

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1400))

Abstract

Deposition of epigenetic marks is an important layer of the transcriptional control of retrotransposons, especially during early embryogenesis. Krüppel-associated box domain zinc finger proteins (KRAB-ZFPs) are one of the largest families of transcription factors, and collectively partake in this process by tethering to thousands of retroelement-containing genomic loci their cofactor KAP1, which acts as a scaffold for a heterochromatin-inducing machinery. However, while the sequence-specific DNA binding potential of the poly-zinc finger-containing KRAB-ZFPs is recognized, very few members of the family have been assigned specific targets. In this chapter, we describe a large-scale functional screen to identify the retroelements bound by individual murine KRAB-ZFPs. Our method is based on the automated transfection of a library of mouse KRAB-ZFP-containing vectors into 293T cells modified to express GFP from a PGK promoter harboring in its immediate vicinity a KAP1-recruiting retroelement-derived sequence. Analysis is then performed by plate reader and flow cytometry fluorescence readout. Such large-scale DNA-centered functional approach can not only help to identify the trans-acting factors responsible for silencing retrotransposons, but also serve as a model for dissecting the transcriptional networks influenced by retroelement-derived cis-acting sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rowe HM, Trono D (2011) Dynamic control of endogenous retroviruses during development. Virology 411(2):273–287. doi:10.1016/j.virol.2010.12.007

    Article  CAS  PubMed  Google Scholar 

  2. Leung DC, Lorincz MC (2012) Silencing of endogenous retroviruses: when and why do histone marks predominate? Trends Biochem Sci 37(4):127–133. doi:10.1016/j.tibs.2011.11.006

    Article  CAS  PubMed  Google Scholar 

  3. Emerson RO, Thomas JH (2009) Adaptive evolution in zinc finger transcription factors. PLoS Genet 5(1):e1000325

    Article  PubMed Central  PubMed  Google Scholar 

  4. Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM (2009) A census of human transcription factors: function, expression and evolution. Nat Rev Genet 10(4):252–263

    Article  CAS  PubMed  Google Scholar 

  5. Friedman JR, Fredericks WJ, Jensen DE, Speicher DW, Huang XP, Neilson EG, Rauscher Iii FJ (1996) KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev 10(16):2067–2078

    Article  CAS  PubMed  Google Scholar 

  6. Schultz DC, Friedman JR, Rauscher Iii FJ (2001) Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2α subunit of NuRD. Genes Dev 15(4):428–443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher Iii FJ (2002) SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev 16(8):919–932

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Nielsen AL, Ortiz JA, You J, Oulad-Abdelghani M, Khechumian R, Gansmuller A, Chambon P, Losson R (1999) Interaction with members of the heterochromatin protein 1 (HP1) family and histone deacetylation are differentially involved in transcriptional silencing by members of the TIF1 family. EMBO J 18(22):6385–6395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Sripathy SP, Stevens J, Schultz DC (2006) The KAP1 corepressor functions to coordinate the assembly of de novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional repression. Mol Cell Biol 26(22):8623–8638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Rowe HM, Jakobsson J, Mesnard D, Rougemont J, Reynard S, Aktas T, Maillard PV, Layard-Liesching H, Verp S, Marquis J, Spitz F, Constam DB, Trono D (2010) KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463(7278):237–240. doi:10.1038/nature08674

    Article  CAS  PubMed  Google Scholar 

  11. Turelli P, Castro-Diaz N, Marzetta F, Kapopoulou A, Raclot C, Duc J, Tieng V, Quenneville S, Trono D (2014) Interplay of TRIM28 and DNA methylation in controlling human endogenous retroelements. Genome Res 24(8):1260–1270. doi:10.1101/gr.172833.114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Matsui T, Leung D, Miyashita H, Maksakova IA, Miyachi H, Kimura H, Tachibana M, Lorincz MC, Shinkai Y (2010) Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464(7290):927–931. doi:10.1038/nature08858

    Article  CAS  PubMed  Google Scholar 

  13. Liu S, Brind’Amour J, Karimi MM, Shirane K, Bogutz A, Lefebvre L, Sasaki H, Shinkai Y, Lorincz MC (2014) Setdb1 is required for germline development and silencing of H3K9me3-marked endogenous retroviruses in primordial germ cells. Genes Dev 28(18):2041–2055. doi:10.1101/gad.244848.114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Castro-Diaz N, Ecco G, Coluccio A, Kapopoulou A, Yazdanpanah B, Friedli M, Duc J, Jang SM, Turelli P, Trono D (2014) Evolutionally dynamic L1 regulation in embryonic stem cells. Genes Dev 28(13):1397–1409. doi:10.1101/gad.241661.114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Jacobs FMJ, Greenberg D, Nguyen N, Haeussler M, Ewing AD, Katzman S, Paten B, Salama SR, Haussler D (2014) An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature 516(7530):242–245. doi:10.1038/nature13760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Simicevic J, Deplancke B (2010) DNA-centered approaches to characterize regulatory protein-DNA interaction complexes. Mol Biosyst 6(3):462–468. doi:10.1039/b916137f

    Article  CAS  PubMed  Google Scholar 

  17. Dey B, Thukral S, Krishnan S, Chakrobarty M, Gupta S, Manghani C, Rani V (2012) DNA-protein interactions: methods for detection and analysis. Mol Cell Biochem 365(1-2):279–299. doi:10.1007/s11010-012-1269-z

    Article  CAS  PubMed  Google Scholar 

  18. Barde I, Salmon P, Trono D (2010) Production and titration of lentiviral vectors. In: Jacqueline N Crawley et al. (ed) Current protocols in neuroscience, Chapter 4: Unit 4.21. doi: 10.1002/0471142301.ns0421s53

  19. Hens K, Feuz JD, Deplancke B (2012) A high-throughput gateway-compatible yeast one-hybrid screen to detect protein-DNA interactions. Methods Mol Biol 786:335

    Article  CAS  PubMed  Google Scholar 

  20. Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JAM (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35(Suppl 2):W71–W74

    Article  PubMed Central  PubMed  Google Scholar 

  21. Rowe HM, Friedli M, Offner S, Verp S, Mesnard D, Marquis J, Aktas T, Trono D (2013) De novo DNA methylation of endogenous retroviruses is shaped by KRAB-ZFPs/KAP1 and ESET. Development 140(3):519–529. doi:10.1242/dev.087585

    Article  CAS  PubMed  Google Scholar 

  22. Wolf D, Goff SP (2009) Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature 458(7242):1201–1204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Turelli and C. Delattre-Gubelman for advice, C. Raclot and S. E. Offner for technical support, M. Chambon and J. B. Chapalay from the EPFL Biomolecular Screening Facility for advice and help with the robotics, and the EPFL Flow Cytometry Core Facility for FACS sorting. This work was supported by funds from the Swiss National Science Foundation and from the European Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Trono Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ecco, G., Rowe, H.M., Trono, D. (2016). A Large-Scale Functional Screen to Identify Epigenetic Repressors of Retrotransposon Expression. In: Garcia-Pérez, J. (eds) Transposons and Retrotransposons. Methods in Molecular Biology, vol 1400. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3372-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3372-3_25

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3370-9

  • Online ISBN: 978-1-4939-3372-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics