Skip to main content

Biochemical Approaches to Study LINE-1 Reverse Transcriptase Activity In Vitro

  • Protocol
  • First Online:
Transposons and Retrotransposons

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1400))

Abstract

In vitro reverse transcriptase assays have been developed to monitor the presence and activity of ORF2p, an essential protein product of the LINE-1 retrotransposon (L1), in cellular fractions. We describe methods for expression and isolation of L1 ribonucleoprotein particles, and identification of ORF2p reverse transcriptase activity. Two independent methods are described: L1 element amplification protocol (LEAP) and direct L1 extension assay (DLEA). The first method involves cDNA synthesis by primer extension using dNTPs followed by a step of PCR amplification. The second method involves primer extension by incorporation of radiolabeled dTMPs followed by dot-blot or gel separation detection. Finally, we discuss the output and benefits of the two methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  2. Beck CR, Garcia-Perez JL, Badge RM, Moran JV (2011) LINE-1 elements in structural variation and disease. Annu Rev Genomics Hum Genet 12:187–215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Hohjoh H, Singer MF (1996) Cytoplasmic ribonucleoprotein complexes containing human LINE-1 protein and RNA. EMBO J 15:630–639

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Khazina E, Weichenrieder O (2009) Non-LTR retrotransposons encode noncanonical RRM domains in their first open reading frame. Proc Natl Acad Sci U S A 106:731–736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Martin SL, Bushman FD (2001) Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon. Mol Cell Biol 21:467–475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Mathias SL, Scott AF, Kazazian HH, Boeke JD, Gabriel A (1991) Reverse transcriptase encoded by a human transposable element. Science 254:1808–1810

    Article  CAS  PubMed  Google Scholar 

  7. Feng Q, Moran JV, Kazazian HH, Boeke JD (1996) Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87:905–916

    Article  CAS  PubMed  Google Scholar 

  8. Alisch RS, Garcia-Perez JL, Muotri AR, Gage FH, Moran JV (2006) Unconventional translation of mammalian LINE-1 retrotransposons. Genes Dev 20:210–224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Doucet AJ, Hulme AE, Sahinovic E, Kulpa DA, Moldovan JB, Kopera HC et al (2010) Characterization of LINE-1 ribonucleoprotein particles. PLoS Genet 6

    Google Scholar 

  10. Taylor MS, Lacava J, Mita P, Molloy KR, Huang CR, Li D et al (2013) Affinity proteomics reveals human host factors implicated in discrete stages of LINE-1 retrotransposition. Cell 155:1034–1048

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kulpa DA, Moran JV (2006) Cis-preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles. Nat Struct Mol Biol 13:655–660

    Article  CAS  PubMed  Google Scholar 

  12. Monot C, Kuciak M, Viollet S, Mir AA, Gabus C, Darlix JL et al (2013) The specificity and flexibility of L1 reverse transcription priming at imperfect T-tracts. PLoS Genet 9:e1003499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Cost GJ, Feng Q, Jacquier A, Boeke JD (2002) Human L1 element target-primed reverse transcription in vitro. EMBO J 21:5899–5910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Piskareva O, Denmukhametova S, Schmatchenko V (2003) Functional reverse transcriptase encoded by the human LINE-1 from baculovirus-infected insect cells. Protein Expr Purif 28:125–130

    Article  CAS  PubMed  Google Scholar 

  15. Baltimore D (1970) RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature 226:1209–1211

    Article  CAS  PubMed  Google Scholar 

  16. Temin HM, Mizutani S (1970) RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 226:1211–1213

    Article  CAS  PubMed  Google Scholar 

  17. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL et al (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015

    Article  CAS  PubMed  Google Scholar 

  18. Kopera HC, Moldovan JB, Morrish TA, Garcia-Perez JL, Moran JV (2011) Similarities between long interspersed element-1 (LINE-1) reverse transcriptase and telomerase. Proc Natl Acad Sci U S A 108:20345–20350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Goodier JL, Cheung LE, Kazazian HH (2012) MOV10 RNA helicase is a potent inhibitor of retrotransposition in cells. PLoS Genet 8:e1002941

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Zhao K, Du J, Han X, Goodier JL, Li P, Zhou X et al (2013) Modulation of LINE-1 and Alu/SVA retrotransposition by Aicardi-Goutières syndrome-related SAMHD1. Cell Rep 4:1108–1115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Horn AV, Klawitter S, Held U, Berger A, Vasudevan AA, Bock A et al (2014) Human LINE-1 restriction by APOBEC3C is deaminase independent and mediated by an ORF1p interaction that affects LINE reverse transcriptase activity. Nucleic Acids Res 42:396–416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Richardson SR, Morell S, Faulkner GJ (2014) L1 retrotransposons and somatic mosaicism in the brain. Annu Rev Genet 48:1–27

    Article  CAS  PubMed  Google Scholar 

  23. An W, Dai L, Niewiadomska AM, Yetil A, O’Donnell KA, Han JS et al (2011) Characterization of a synthetic human LINE-1 retrotransposon ORFeus-Hs. Mob DNA 2:2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Wagstaff BJ, Barnerssoi M, Roy-Engel AM (2011) Evolutionary conservation of the functional modularity of primate and murine LINE-1 elements. PLoS One 6:e19672

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Dai L, Taylor MS, O’Donnell KA, Boeke JD (2012) Poly(A) binding protein C1 is essential for efficient L1 retrotransposition and affects L1 RNP formation. Mol Cell Biol 32:4323–4336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Mandal PK, Ewing AD, Hancks DC, Kazazian HH (2013) Enrichment of processed pseudogene transcripts in L1-ribonucleoprotein particles. Hum Mol Genet 22:3730–3748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Viollet S, Monot C, Cristofari G (2014) L1 retrotransposition: the snap-velcro model and its consequences. Mob Genet Elements 4:e28907

    Article  PubMed Central  PubMed  Google Scholar 

  28. Moran JV, DeBerardinis RJ, Kazazian HHJ (1999) Exon shuffling by L1 retrotransposition. Science 283:1530–1534

    Article  CAS  PubMed  Google Scholar 

  29. Han JS, Boeke JD (2004) A highly active synthetic mammalian retrotransposon. Nature 429:314–318

    Article  CAS  PubMed  Google Scholar 

  30. Sambrook J, and Russell DW (2006) Calcium-phosphate-mediated Transfection of Eukaryotic Cells with Plasmid DNAs. CSH Protoc. doi is: 10.1101/pdb.prot387

    Google Scholar 

Download references

Acknowledgements

We are grateful to John V. Moran (Univ. of Michigan, USA) and to Nicolas Gilbert (Institut de Génétique Humaine, France) for sharing plasmids. This work was supported by a joint Avenir grant from the Institut National de la Santé Et de la Recherche Medicale and the Institut National du Cancer [2009-340 to G.C.]; the European Research Council [243312 to G.C.]; and by Agence Nationale pour la Recherche [ANR-11-LABX-0028-01 to G.C.].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaël Cristofari Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Viollet, S., Doucet, A.J., Cristofari, G. (2016). Biochemical Approaches to Study LINE-1 Reverse Transcriptase Activity In Vitro. In: Garcia-Pérez, J. (eds) Transposons and Retrotransposons. Methods in Molecular Biology, vol 1400. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3372-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3372-3_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3370-9

  • Online ISBN: 978-1-4939-3372-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics