Skip to main content

DNA-Based Characterization and Identification of Arbuscular Mycorrhizal Fungi Species

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1399))

Abstract

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of most land plants. They have great ecological and economic importance as they can improve plant nutrition, plant water supply, soil structure, and plant resistance to pathogens. We describe two approaches for the DNA-based characterization and identification of AMF, which both can be used for single fungal spores, soil, or roots samples and resolve closely related AMF species: (a) Sanger sequencing of a 1.5 kb extended rDNA-barcode from clone libraries, e.g., to characterize AMF isolates, and (b) high throughput 454 GS-FLX+ pyrosequencing of a 0.8 kb rDNA fragment, e.g., for in-field monitoring.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Schüßler A, Walker C (2011) Evolution of the ‘plant-symbiotic’ fungal phylum, Glomeromycota. In: Pöggeler S, Wöstemeyer J (eds) Evolution of fungi and fungal-like organisms, vol XIV, The Mycota. Springer, Berlin Heidelberg, pp 163–185

    Chapter  Google Scholar 

  2. Hempel S, Renker C, Buscot F (2007) Differences in the species composition of arbuscular mycorrhizal fungi in spore, root and soil communities in a grassland ecosystem. Environ Microbiol 9:1930–1938

    Article  PubMed  CAS  Google Scholar 

  3. Lee J, Lee S, Young JPW (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 65:339–349

    Article  PubMed  CAS  Google Scholar 

  4. Redecker D (2000) Specific PCR primers to identify arbuscular mycorrhizal fungi within colonized roots. Mycorrhiza 10:73–80

    Article  CAS  Google Scholar 

  5. Mummey DL, Rillig MC (2007) Evaluation of LSU rRNA-gene PCR primers for analysis of arbuscular mycorrhizal fungal communities via terminal restriction fragment length polymorphism analysis. J Microbiol Methods 70:200–204

    Article  PubMed  CAS  Google Scholar 

  6. Stockinger H, Krüger M, Schüßler A (2010) DNA barcoding of arbuscular mycorrhizal fungi. New Phytol 187:461–474

    Article  PubMed  CAS  Google Scholar 

  7. Krüger C, Walker C, Schüßler A (2014) Scutellospora savannicola: redescription, epitypification, DNA barcoding and transfer to Dentiscutata. Mycol Prog 13:1165–1178

    Article  Google Scholar 

  8. Stockinger H, Walker C, Schüßler A (2009) ‘Glomus intraradices DAOM197198’, a model fungus in arbuscular mycorrhiza research, is not Glomus intraradices. New Phytol 183:1176–1187

    Article  PubMed  Google Scholar 

  9. Krüger M, Stockinger H, Krüger C et al (2009) DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol 183:212–223

    Article  PubMed  Google Scholar 

  10. Kohout P, Sudová R, Janoušková M et al (2014) Comparison of commonly used primer sets for evaluating arbuscular mycorrhizal fungal communities: is there a universal solution? Soil Biol Biochem 68:482–493

    Article  CAS  Google Scholar 

  11. Senés-Guerrero C, Torres-Cortés G, Pfeiffer S et al (2014) Potato-associated arbuscular mycorrhizal fungal communities in the Peruvian Andes. Mycorrhiza 24:405–417

    Article  PubMed  Google Scholar 

  12. Senés-Guerrero C, Schüßler A (2015) A conserved arbuscular mycorrhizal fungal core-species community structure in potato roots from the Andes. Fungal Divers (in press): online first, DOI: 10.1007/s13225-015-0328-7

    Google Scholar 

  13. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl Acids Res 30:3059–3066

    Google Scholar 

  14. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Google Scholar 

  15. Krüger M, Krüger C, Walker C et al (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984

    Google Scholar 

  16. Berger SA, Krompass D, Stamatakis A (2011) Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum-likelihood. Systematic Biol 60:291–302

    Google Scholar 

  17. Berger SA, Stamatakis A (2011) Aligning short reads to reference alignments and trees. Bioinformatics 27:2068–2075

    Google Scholar 

Download references

Acknowledgements

This work was supported by the European Community’s Seventh Framework Programme FP7/2007 under grant agreement no. 227522.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Schüßler .

Editor information

Editors and Affiliations

Appendix: Examples of Command Lines for 454 Sequencing Data Analysis

Appendix: Examples of Command Lines for 454 Sequencing Data Analysis

Bioinformatics pipeline for analyzing 454 sequence reads

  1. 1.

    De-multiplex.

    For example, when sequencing a full 454-plate split into four gaskets (physically separated compartments), we use the following command to de-multiplex the first gasket:

    split_libraries.py -m Mapping1.txt -f 1.TCA.454Reads.fna -q 1.TCA.454Reads.qual -l 500 -o split_Library_Run1_Output/ -n 1000000

    and this command to de-multiplex the second gasket:

    split_libraries.py -m Mapping2.txt -f 2.TCA.454Reads.fna -q 2.TCA.454Reads.qual -l 500 -o split_Library_Run2_Output/ -n 2000000

    Consider that the parameters (such as sequence length) can be modified according to your needs; in the previous example we set the minimum length of sequences to be implemented in the clustering to 500 bp.

  2. 2.

    Combine your de-multiplexed sequences in a single file:

    cat split_Library_Run1_Output/seqs.fna split_Library_Run2_Output/seqs.fna > Combined_seqs.fna

  3. 3.

    Cluster your sequences.

    First you have to prepare a text file containing the parameters of the clustering. We use the following parameters and save the text file as parameters.txt:

    pick_otus:otu_picking_method uclust

    pick_otus:similarity 0.98

    pick_otus:enable_rev_strand_match True

    We afterwards perform the clustering by using the following command:

    pick_de_novo_otus.py -i combined_seqs.fna -p parameters.txt -o uclust_picked_otus/

  4. 4.

    Remove singletons.

    After clustering, you obtain a biom table with your “OTUs” (representative sequences of 98 % similarity clusters).

    First remove the singletons (sequences represented only once) from the table:

    filter_otus_from_otu_table.py -i otu_table.biom -o otu_table_no_singletons.biom -n2

    Afterwards remove singletons from the fasta file:

    filter_fasta.py -f combined_seqs.fasta -o biom_filtered_seqs.fasta -b otu_table_no_singletons.biom

  5. 5.

    Remove non-AMF sequences.

    The previously created file “biom_filtered_seqs.fasta” contains your combined sequences without singletons. However, it still contains non-AMF sequences which in most cases have to be removed before further analysis.

    To remove these sequences we use Blast2GO (https://www.blast2go.com/b2ghome) which takes individual sequences and finds similar sequences in NCBI.

    The output of Blast2GO is an Excel-format file with the hits of your query sequences. We normally order the hits alphabetically and simply manually delete the non-AMF rows from the Excel table. After deleting the non-AMF rows, copy the remaining names of sequences, which will be kept for further analysis, and paste them into a text file. Name the text file as seqs_to_keep.txt (or according to your naming system).

    To remove the non-AMF sequences from the FASTA file write in QIIME:

    filter_fasta.py -f seqs_no_singletons.fasta -o seqs_no_cont.fasta -s seqs_to_keep.txt

    To remove the non-AMF sequences from the OTU table write:

    filter_otus_from_otu_table.py -i otu_table_no_singletons.biom -o otu_table_nosingletons_nocontaminants.biom -e seqs_to_keep.txt --negate_ids_to_exclude

  6. 6.

    Convert the file otu_table_nosingletons_nocontaminants.biom into a tabulator delimited table:

    convert_biom.py -i otu_table_nosingletons_nocontaminants.biom -o otu_table_nosingletons_nocontaminants.txt -b

    This table contains information about the samples, AMF “OTUs” (98 % similarity clusters), and read amounts.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Senés-Guerrero, C., Schüßler, A. (2016). DNA-Based Characterization and Identification of Arbuscular Mycorrhizal Fungi Species. In: Martin, F., Uroz, S. (eds) Microbial Environmental Genomics (MEG). Methods in Molecular Biology, vol 1399. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3369-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3369-3_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3367-9

  • Online ISBN: 978-1-4939-3369-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics