Skip to main content

“Deciphering Archaeal Communities” Omics Tools in the Study of Archaeal Communities

  • Protocol
  • First Online:
Microbial Environmental Genomics (MEG)

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1399))

Abstract

Archaea constitute one of the three recognized phylogenetic groups of organisms living on the planet, and the latest to be discovered. Most Archaea resist cultivation and are studied using molecular methods. High-throughput amplicon sequencing and metagenomic approaches have been key in uncovering hitherto unknown archaeal diversity, their metabolic potential, and have even provided an insight into genomes of a number of uncultivated members of this group. Here, we summarize protocols describing sampling, molecular, metagenomic, and metatranscriptomic analyses as well as bioinformatics approaches that have proved useful for the study of archaea in natural samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87:4576–4579

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  PubMed  CAS  Google Scholar 

  3. López-García P (2005) Extremophiles. In: Gargaud M, Barbier B, Martin H, Reisse J (eds) Lectures in astrobiology. Springer-Verlag, Heidelberg, pp 657–679

    Chapter  Google Scholar 

  4. Valentine DL (2007) Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat Rev Microbiol 5:316–323

    Article  PubMed  CAS  Google Scholar 

  5. Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    Article  PubMed  CAS  Google Scholar 

  6. Delong EF (1998) Everything in moderation: archaea as ‘non-extremophiles’. Curr Opin Genet Dev 8:649–654

    Article  PubMed  CAS  Google Scholar 

  7. Delong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Fuhrman JA, McCallum K, Davis AA (1992) Novel major archaebacterial group from marine plankton. Nature 356:148–149

    Article  PubMed  CAS  Google Scholar 

  9. Fuhrman JA, Davis AA (1997) Widespread Archaea and novel Bacteria from the deep sea as shown by 16S rRNA gene sequences. Mar Ecol Prog Ser 150:275–285

    Article  Google Scholar 

  10. López-García P, Moreira D, López-López A, Rodríguez-Valera F (2001) A novel haloarchaeal-related lineage is widely distributed in deep oceanic regions. Environ Microbiol 3:72–78

    Article  PubMed  Google Scholar 

  11. Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252

    Article  PubMed  CAS  Google Scholar 

  12. Guy L, Ettema TJ (2011) The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbiol 19:580–587

    Article  PubMed  CAS  Google Scholar 

  13. Quaiser A, Ochsenreiter T, Klenk HP, Kletzin A, Treusch AH, Meurer G, Eck J, Sensen CW, Schleper C (2002) First insight into the genome of an uncultivated crenarchaeote from soil. Environ Microbiol 4:603–611

    Article  PubMed  CAS  Google Scholar 

  14. Schleper C, Jurgens G, Jonuscheit M (2005) Genomic studies of uncultivated archaea. Nat Rev Microbiol 3:479–488

    Article  PubMed  CAS  Google Scholar 

  15. Nicol GW, Schleper C (2006) Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle? Trends Microbiol 14:207–212

    Article  PubMed  CAS  Google Scholar 

  16. Pester M, Schleper C, Wagner M (2011) The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr Opin Microbiol 14:300–306

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Iverson V, Morris RM, Frazar CD, Berthiaume CT, Morales RL, Armbrust EV (2012) Untangling genomes from metagenomes: revealing an uncultured class of marine Euryarchaeota. Science 335:587–590

    Article  PubMed  CAS  Google Scholar 

  18. Deschamps P, Zivanovic Y, Moreira D, Rodriguez-Valera F, Lopez-Garcia P (2014) Pangenome evidence for extensive interdomain horizontal transfer affecting lineage core and shell genes in uncultured planktonic thaumarchaeota and euryarchaeota. Genome Biol Evol 6:1549–1563

    Article  PubMed  PubMed Central  Google Scholar 

  19. Martin-Cuadrado AB, Garcia-Heredia I, Molto AG, Lopez-Ubeda R, Kimes N, Lopez-Garcia P, Moreira D, Rodriguez-Valera F (2015) A new class of marine Euryarchaeota group II from the Mediterranean deep chlorophyll maximum. ISME J 9(7):1619–1634. doi:10.1038/ismej.2014.249

    Article  PubMed  CAS  Google Scholar 

  20. Cuadros-Orellana S, Martin-Cuadrado AB, Legault B, D’Auria G, Zhaxybayeva O, Papke RT, Rodriguez-Valera F (2007) Genomic plasticity in prokaryotes: the case of the square haloarchaeon. ISME J 1:235–245

    Article  PubMed  CAS  Google Scholar 

  21. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, Darling A, Malfatti S, Swan BK, Gies EA, Dodsworth JA, Hedlund BP, Tsiamis G, Sievert SM, Liu WT, Eisen JA, Hallam SJ, Kyrpides NC, Stepanauskas R, Rubin EM, Hugenholtz P, Woyke T (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431–437

    Article  PubMed  CAS  Google Scholar 

  22. Hugoni M, Taib N, Debroas D, Domaizon I, Jouan Dufournel I, Bronner G, Salter I, Agogue H, Mary I, Galand PE (2013) Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters. Proc Natl Acad Sci U S A 110:6004–6009

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Martin-Cuadrado AB, Rodriguez-Valera F, Moreira D, Alba JC, Ivars-Martinez E, Henn MR, Talla E, Lopez-Garcia P (2008) Hindsight in the relative abundance, metabolic potential and genome dynamics of uncultivated marine archaea from comparative metagenomic analyses of bathypelagic plankton of different oceanic regions. ISME J 2:865–886

    Article  PubMed  CAS  Google Scholar 

  24. PowerSoil®DNA isolation kit instruction manual. www.mobio.com/images/custom/file/protocol/12888.pdf

  25. RNeasy mini handbook. http://www.qiagen.com/si/resources/resourcedetail?id=14e7cf6e-521a-4cf7-8cbc-bf9f6fa33e24&lang=en

  26. QIAquick spin handbook. http://www.qiagen.com/si/products/catalog/sample-technologies/dna-sample-technologies/dna-cleanup/qiaquick-pcr-purification-kit/#resources

  27. RNA PowerSoil® Total RNA isolation kit instruction manual. http://www.mobio.com/images/custom/file/protocol/12866-25.pdf

  28. pGEM®-T easy vector system technical manual. http://www.promega.com/~/media/files/resources/protocols/technical%20manuals/0/pgem-t%20and%20pgem-t%20easy%20vector%20systems%20protocol.pdf

  29. Protocol for CopyControl™ Fosmid library production kit with pCC1Fos vector. http://www.epibio.com/docs/default-source/protocols/copycontrol-fosmid-library-production-kit-with-pcc1fos-vector.pdf?sfvrsn=6

  30. Blainey PC, Mosier AC, Potanina A, Francis CA, Quake SR (2011) Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis. PLoS One 6, e16626

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Luo C, Tsementzi D, Kyrpides N, Read T, Konstantinidis KT (2012) Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. PLoS One 7, e30087

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. GS FLX Titanium Rapid Library preparation kit. http://lifescience.roche.com/shop/products/gs-flx-titanium-rapid-library-preparation-kit

  33. Nextera® XT DNA sample preparation kit. http://support.illumina.com/sequencing/sequencing_kits/nextera_xt_dna_kit.html

  34. Teeling H, Waldmann J, Lombardot T, Bauer M, Glockner FO (2004) TETRA: a web-service and a stand-alone program for the analysis and comparison of tetranucleotide usage patterns in DNA sequences. BMC Bioinformatics 5:163

    Article  PubMed  PubMed Central  Google Scholar 

  35. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovuch E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378

    PubMed  CAS  Google Scholar 

  36. Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1

    Article  Google Scholar 

  37. Delcher A, Harmon D, Kasif S, White O, Salzberg S (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27:4636–4641

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Hyatt D, LoCascio PF, Hauser LJ, Uberbacher EC (2012) Gene and translation initiation site prediction in metagenomic sequences. Bioinformatics 28:2223–2230

    Article  PubMed  CAS  Google Scholar 

  39. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Marchler-Bauer A, Anderson JB, Derbyshire MK, DeWeese-Scott C, Gonzales NR, Gwadz M, Hao L, He S, Hurwitz DI, Jackson JD, Ke Z, Krylov D, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokadov M, Song JS, Thanki N, Yamashita RA, Yin JJ, Zhang D, Bryant SH (2005) CDD: a conserved domain database for protein classification. Nucleic Acids Res 33:D192–D196

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Huang Y, Gilna P, Li W (2009) Identification of ribosomal RNA genes in metagenomic fragments. Bioinformatics 25:1338–1340

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins D (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  PubMed  PubMed Central  Google Scholar 

  45. Criscuolo A, Gribaldo S (2010) BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol 10:210

    Article  PubMed  PubMed Central  Google Scholar 

  46. Philippe H (1993) MUST, a computer package of management utilities for sequences and trees. Nucleic Acids Res 21:5264–5272

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Darriba D, Taboada GL, Doallo R, Posada D (2011) ProtTest3: fast selection of best-fit models of protein evolution. Bioinformatics 27:1164–1165

    Article  PubMed  CAS  Google Scholar 

  48. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  PubMed  CAS  Google Scholar 

  49. Berger SA, Krompass D, Stamatakis A (2011) Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum likelihood. Syst Biol 60:291–302

    Article  PubMed  PubMed Central  Google Scholar 

  50. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Ronquist F, Teslenko M, van der Mark P, Azres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBazes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  52. Repli-G single cell kit. http://www.qiagen.com/si/resources/resourcedetail?id=38faca1c-64b0-4281-aab3-aa8324bbd181&lang=en

  53. Rinke C, Lee J, Nath N, Goudeau D, Thompson B, Poulton N, Dmitrieff E, Malmstrom R, Stepanauskas R, Woyke T (2014) Obtaining genomes from uncultivated environmental microorganisms using FACS-based single-cell genomics. Nat Protoc 9:1038–1048

    Article  PubMed  CAS  Google Scholar 

  54. Luo H, Tolar BB, Swan BK, Zhang CL, Stepanauskas R, Moran MA, Hollibaugh JT (2014) Single-cell genomics shedding light on marine Thaumarchaeota diversification. ISME J 8:732–736

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Morono Y, Terada T, Hoshino T, Inagaki F (2014) Hot-alkaline DNA extraction method for deep-subseafloor archaeal communities. Appl Environ Microbiol 80:1985–1994

    Article  PubMed  PubMed Central  Google Scholar 

  56. Petitjean C, Deschamps P, López-Garcia P, Moreira D, Brochier-Armanet C (2015) Extending the conserved phylogenetic core of Archaea disentangles the evolution of the third domain of life. Mol Biol Evol 32(5):1242–1254. doi:10.1093/molbev/msv015 (advanced access publication)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

L.P. is supported by Slovenian Research Agency project J1-6741 and programme P1-0198. A.B.M.C. is supported by Spanish Ministerio de Economia y Competitividad project MEDIMAX BFPU2013-48007-P. P.L.G. acknowledges the support of CNRS. The authors thank Céline Petitjean and David Moreira for providing rooted Bayesian phylogenetic tree of Archaea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lejla Pašić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pašić, L., Martin-Cuadrado, AB., López-García, P. (2016). “Deciphering Archaeal Communities” Omics Tools in the Study of Archaeal Communities. In: Martin, F., Uroz, S. (eds) Microbial Environmental Genomics (MEG). Methods in Molecular Biology, vol 1399. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3369-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3369-3_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3367-9

  • Online ISBN: 978-1-4939-3369-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics