Skip to main content

Physiological Analysis of Phototropic Responses in Arabidopsis

  • Protocol
  • First Online:
Environmental Responses in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1398))

Abstract

Plants utilize light as sole energy source. To maximize light capture they are able to detect the light direction and orient themselves towards the light source. This phototropic response is mediated by the plant blue light photoreceptors phototropin1 and 2 (phot1 and phot2). Although fully differentiated plants also exhibit this response it can be best observed in etiolated seedlings. Differences in light between the illuminated and shaded site of a seedling stem lead to changes in the auxin-distribution, resulting in cell elongation on the shaded site. Since phototropism connects light perception, signaling, and auxin transport, it is of great interest to analyze this response with a fast and simple method.

Here we describe a method to analyze the phototropic response of Arabidopsis seedlings. With numerous mutants available, its fast germination and its small size Arabidopsis is well suited for this analysis. Different genotypes can be simultaneously probed in less than a week.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whippo CW, Hangarter RP (2006) Phototropism: bending towards enlightenment. Plant Cell 18(5):1110–1119. doi:10.1105/tpc.105.039669

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Darwin C (1880) The power of movements in plants. John Murray, London

    Book  Google Scholar 

  3. Went FW (1926) On growth accelerating substances in the coleoptile of Avena sativa. Proc K Akad Wet 30:10–19

    Google Scholar 

  4. Cholodny N (1927) Wuchshormone und Tropismen bei den Pflanzen. Biol Zentralbl 47:604–626

    CAS  Google Scholar 

  5. Kögel F, Haagen-Smit AJ (1931) Mitteilung über pflanzliche Wachstumsstoffe. Über die Chemie des Wuchsstoffes. Proc K Ned Akad Wet 34:1411–1416

    Google Scholar 

  6. Huala E, Oeller PW, Liscum E, Han IS, Larsen E, Briggs WR (1997) Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science 278(5346):2120–2123

    Article  CAS  PubMed  Google Scholar 

  7. Sakai T, Kagawa T, Kasahara M, Swartz TE, Christie JM, Briggs WR, Wada M, Okada K (2001) Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci U S A 98(12):6969–6974

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Okajima K, Matsuoka D, Tokutomi S (2011) LOV2-linker-kinase phosphorylates LOV1-containing N-terminal polypeptide substrate via photoreaction of LOV2 in Arabidopsis phototropin1. FEBS Lett 585(21):3391–3395

    Article  CAS  PubMed  Google Scholar 

  9. Kagawa T, Sakai T, Suetsugu N, Oikawa K, Ishiguro S, Kato T, Tabata S, Okada K, Wada M (2001) Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291(5511):2138–2141

    Article  CAS  PubMed  Google Scholar 

  10. Ahmad M, Jarillo JA, Smirnova O, Cashmore AR (1998) The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro. Mol Cell 1(7):939–948

    Article  CAS  PubMed  Google Scholar 

  11. Parks BM, Quail PH, Hangarter RP (1996) Phytochrome A regulates red-light induction of phototropic enhancement in Arabidopsis. Plant Physiol 110(1):155–162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Lariguet P, Fankhauser C (2004) Hypocotyl growth orientation in blue light is determined by phytochrome A inhibition of gravitropism and phototropin promotion of phototropism. Plant J 40(5):826–834

    Article  CAS  PubMed  Google Scholar 

  13. Rösler J, Klein I, Zeidler M (2007) Arabidopsis fhl/fhy1 double mutant reveals a distinct cytoplasmic action of phytochrome A. Proc Natl Acad Sci U S A 104(25):10737–10742

    Article  PubMed Central  PubMed  Google Scholar 

  14. Rösler J, Jaedicke K, Zeidler M (2010) Cytoplasmic phytochrome action. Plant Cell Physiol 51(8):1248–1254

    Article  PubMed  Google Scholar 

  15. Ohgishi M, Saji K, Okada K, Sakai T (2004) Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis. Proc Natl Acad Sci U S A 101(8):2223–2228

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Hangarter RP (1997) Gravity, light and plant form. Plant Cell Environ 20(6):796–800

    Article  CAS  PubMed  Google Scholar 

  17. Janoudi AK, Gordon WR, Wagner D, Quail P, Poff KL (1997) Multiple phytochromes are involved in red-light-induced enhancement of first-positive phototropism in Arabidopsis thaliana. Plant Physiol 113(3):975–979

    Google Scholar 

  18. Tsuchida-Mayama T, Sakai T, Hanada A, Uehara Y, Asami T, Yamaguchi S (2010) Role of the phytochrome and cryptochrome signaling pathways in hypocotyl phototropism. Plant J 62(4):653–662

    Article  CAS  PubMed  Google Scholar 

  19. Motchoulski A, Liscum E (1999) Arabidopsis NPH3: a NPH1 photoreceptor-interacting protein essential for phototropism. Science 286(5441):961–964

    Article  CAS  PubMed  Google Scholar 

  20. Sakai T, Wada T, Ishiguro S, Okada K (2000) RPT2. A signal transducer of the phototropic response in Arabidopsis. Plant Cell 12(2):225–236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Lariguet P, Schepens I, Hodgson D, Pedmale UV, Trevisan M, Kami C, de Carbonnel M, Alonso JM, Ecker JR, Liscum E, Fankhauser C (2006) PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism. Proc Natl Acad Sci 103(26):10134–10139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. de Carbonnel M, Davis P, Roelfsema MR, Inoue S, Schepens I, Lariguet P, Geisler M, Shimazaki K, Hangarter R, Fankhauser C (2010) The Arabidopsis PHYTOCHROME KINASE SUBSTRATE2 protein is a phototropin signaling element that regulates leaf flattening and leaf positioning. Plant Physiol 152(3):1391–1405

    Article  PubMed Central  PubMed  Google Scholar 

  23. Demarsy E, Schepens I, Okajima K, Hersch M, Bergmann S, Christie J, Shimazaki K, Tokutomi S, Fankhauser C (2012) Phytochrome kinase substrate 4 is phosphorylated by the phototropin 1 photoreceptor. EMBO J 31(16):3457–3467

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Haga K, Takano M, Neumann R, Iino M (2005) The Rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin. Plant Cell 17(1):103–115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Kami C, Allenbach L, Zourelidou M, Ljung K, Schutz F, Isono E, Watahiki MK, Yamamoto KT, Schwechheimer C, Fankhauser C (2014) Reduced phototropism in pks mutants may be due to altered auxin-regulated gene expression or reduced lateral auxin transport. Plant J 77(3):393–403. doi:10.1111/tpj.12395

    Article  CAS  PubMed  Google Scholar 

  26. Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415(6873):806–809. doi:10.1038/415806a

    Article  PubMed  Google Scholar 

  27. Ding Z, Galvan-Ampudia CS, Demarsy E, Langowski L, Kleine-Vehn J, Fan Y, Morita MT, Tasaka M, Fankhauser C, Offringa R, Friml J (2011) Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nat Cell Biol 13(4):447–452. doi:10.1038/ncb2208

    Article  CAS  PubMed  Google Scholar 

  28. Noh B, Murphy AS, Spalding EP (2001) Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell 13(11):2441–2454

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Nagashima A, Uehara Y, Sakai T (2008) The ABC subfamily B auxin transporter AtABCB19 is involved in the inhibitory effects of N-1-naphthyphthalamic acid on the phototropic and gravitropic responses of Arabidopsis hypocotyls. Plant Cell Physiol 49(8):1250–1255. doi:10.1093/pcp/pcn092

    Article  CAS  PubMed  Google Scholar 

  30. Christie JM, Yang H, Richter GL, Sullivan S, Thomson CE, Lin J, Titapiwatanakun B, Ennis M, Kaiserli E, Lee OR, Adamec J, Peer WA, Murphy AS (2011) phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism. PLoS Biol 9(6):e1001076. doi:10.1371/journal.pbio.1001076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Stone BB, Stowe-Evans EL, Harper RM, Celaya RB, Ljung K, Sandberg G, Liscum E (2008) Disruptions in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis. Mol Plant 1(1):129–144. doi:10.1093/mp/ssm013

    Article  CAS  PubMed  Google Scholar 

  32. Whippo CW, Hangarter RP (2003) Second positive phototropism results from coordinated Co-action of the phototropins and cryptochromes. Plant Physiol 132(3):1499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Yamamoto K, Suzuki T, Aihara Y, Haga K, Sakai T, Nagatani A (2014) The phototropic response is locally regulated within the topmost light-responsive region of the Arabidopsis thaliana seedling. Plant Cell Physiol 55(3):497–506. doi:10.1093/pcp/pct184

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by DFG grant ZE485/2-2 to MZ. I thank Anna Lena Lichtenthäler and Henrik Johansson for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Zeidler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zeidler, M. (2016). Physiological Analysis of Phototropic Responses in Arabidopsis . In: Duque, P. (eds) Environmental Responses in Plants. Methods in Molecular Biology, vol 1398. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3356-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3356-3_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3354-9

  • Online ISBN: 978-1-4939-3356-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics