Skip to main content

Construction of Artificial miRNAs to Prevent Drought Stress in Solanum tuberosum

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1398))

Abstract

The use of artificial microRNAs (amiRNAs) is still a relatively new technique in molecular biology with a wide range of applications in life sciences. Here, we describe the silencing of the CBP80/ABH1 gene in Solanum tuberosum with the use of amiRNA. The CBP80/ABH1 protein is part of the Cap Binding Complex (CBC), which is involved in plant responses to drought stress conditions. Transformed plants with a decreased level of CBP80/ABH1 display increased tolerance to water shortage conditions. We describe how to design amiRNA with the Web MicroRNA Designer platform in detail. Additionally, we explain how to perform all steps of a procedure aiming to obtain transgenic potato plants with the use of designed amiRNA, through callus tissue regeneration and Agrobacterium tumefaciens strain LBA4404 as a transgene carrier.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kim YJ, Zheng B, Yu Y et al (2011) The role of Mediator in small and long noncoding RNA production in Arabidopsis thaliana. EMBO J 30:814–822

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Xie Z, Allen E, Fahlgren N et al (2005) Expression of Arabidopsis MIRNA Genes. Plant Physiol 138:2145–2154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Schauer SE, Jacobsen SE, Meinke DW et al (2002) DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci 7:487–491

    Article  CAS  PubMed  Google Scholar 

  4. Schmitz RJ, Hong L, Fitzpatrick KE et al (2007) DICER-LIKE 1 and DICER-LIKE 3 redundantly act to promote flowering via repression of FLOWERING LOCUS C in Arabidopsis thaliana. Genetics 176:1359–1362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Szarzynska B, Sobkowiak L, Pant BD et al (2009) Gene structures and processing of Arabidopsis thaliana HYL1-dependent pri-miRNAs. Nucleic Acids Res 37:3083–3093

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Raczynska KD, Stepien A, Kierzkowski D et al (2014) The SERRATE protein is involved in alternative splicing in Arabidopsis thaliana. Nucleic Acids Res 42:1224–1244

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Yu B, Bi L, Zheng B et al (2008) The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. Proc Natl Acad Sci U S A 105:10073–10078

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Kmieciak M, Simpson CG, Lewandowska D et al (2002) Cloning and characterization of two subunits of Arabidopsis thaliana nuclear cap-binding complex. Gene 283:171–183

    Article  CAS  PubMed  Google Scholar 

  9. Park MY, Wu G, Gonzalez-Sulser A et al (2005) Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci U S A 102:3691–3696

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Yu B, Yang Z, Li J et al (2005) Methylation as a crucial step in plant microRNA biogenesis. Science 307:932–935

    Article  CAS  PubMed  Google Scholar 

  11. Ramachandran V, Chen X (2008) Degradation of micro RNAs by a family of exoribonucleases in Arabidopsis. Science 321:1490–1492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci U S A 102:11928–11933

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Wang L, Song X, Gu L et al (2013) NOT2 proteins promote polymerase II-dependent transcription and interact with multiple MicroRNA biogenesis factors in Arabidopsis. Plant Cell 25:715–727

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Rajagopalan R, Vaucheret H, Trejo J et al (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Pouch-Pélissier MN, Pélissier T, Elmayan T et al (2008) SINE RNA induces severe developmental defects in Arabidopsis thaliana and interacts with HYL1 (DRB1), a key member of the DCL1 complex. PLoS Genet. doi:10.1371/journal.pgen.1000096

    PubMed Central  PubMed  Google Scholar 

  16. Furumizu C, Tsukaya H, Komeda Y (2010) Characterization of EMU, the Arabidopsis homolog of the yeast THO complex member HPR1. RNA 16:1809–1817

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Jung JH, Seo PJ, Ahn JH et al (2012) Arabidopsis RNA-binding protein FCA regulates microRNA172 processing in thermosensory flowering. J Biol Chem 287:16007–16016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Calderon-Villalobos LIA, Kuhnle C, Dohmann EMN et al (2005) The evolutionarily conserved TOUGH protein is required for proper development of Arabidopsis thaliana. Plant Cell 17:2473–2485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Lee B, Kapoor A, Zhu J et al (2006) STABILIZED1, a stress-upregulated nuclear protein, is required for pre-mRNA splicing, mRNA turnover, and stress tolerance in Arabidopsis. Plant Cell 18:1736–1749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Zhan X, Wang B, Li H et al (2012) Arabidopsis proline-rich protein important for development and abiotic stress tolerance is involved in microRNA biogenesis. Proc Natl Acad Sci U S A 109:18198–18203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Wu X, Shi Y, Li J et al (2013) A role for the RNA-binding protein MOS2 in microRNA maturation in Arabidopsis. Cell 23:645–657

    CAS  Google Scholar 

  22. Speth C, Willing EM, Rausch S et al (2013) RACK1 scaffold proteins influence miRNA abundance in Arabidopsis. Plant J 76:433–445

    Article  CAS  PubMed  Google Scholar 

  23. Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216

    Article  CAS  PubMed  Google Scholar 

  24. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M et al (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190

    Article  CAS  PubMed  Google Scholar 

  25. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:68–73

    Article  Google Scholar 

  26. Schwab R, Ossowski S (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Matzke AJ, Chilton MD (1981) Site-specific insertion of genes into T-DNA of the Agrobacterium tumor-inducing plasmid: an approach to genetic engineering of higher plant cells. J Mol Appl Genet 1:39–49

    CAS  PubMed  Google Scholar 

  28. Duckely M, Hohn B (2003) The VirE2 protein of Agrobacterium tumefaciens: the Yin and Yang of T-DNA transfer. FEMS Microbiol Lett 223:1–6

    Article  CAS  PubMed  Google Scholar 

  29. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  30. Millam S (2007) Potato (Solanum tuberosum L.). In: Wang K (ed) Methods in molecular biology. Humana Press Inc., Totowa, NJ, pp 25–35

    Google Scholar 

  31. Gleave AP (1992) A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol Biol 20:1203–1207

    Article  CAS  PubMed  Google Scholar 

  32. Wesley SV, Helliwell C, Smith N et al (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590

    Article  CAS  PubMed  Google Scholar 

  33. Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53:674–690

    Article  CAS  PubMed  Google Scholar 

  34. Huang X, Madan A (1999) CAP3: A DNA Sequence Assembly Program. Genome Res. doi:10.1101/gr.9.9.868

    PubMed Central  PubMed  Google Scholar 

  35. Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  36. Pieczynski M, Marczewski W, Hennig J et al (2012) Down-regulation of CBP80 gene expression as a strategy to engineer a drought-tolerant potato. Plant Biotechnol J 11:459–469

    Article  PubMed  Google Scholar 

  37. Ausubel FM, Brent R, Kingston RE et al (2003) Current protocols in molecular biology. John Wiley & Sons Inc., Hoboken, NJ

    Google Scholar 

  38. Chen H, Nelson RS, Sherwood JL (1994) Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. Biotechniques 16:664–668

    CAS  PubMed  Google Scholar 

  39. Mersereau M, Pazour GJ, Das A (1990) Efficient transformation of Agrobacterium tumefaciens by electroporation. Gene 90:149–151

    Article  CAS  PubMed  Google Scholar 

  40. Wise AA, Liu Z, Binns AN (2006) Three methods for the introduction of foreign DNA into Agrobacterium. Methods Mol Biol 343:43–53

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zofia Szweykowska-Kulinska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wyrzykowska, A., Pieczynski, M., Szweykowska-Kulinska, Z. (2016). Construction of Artificial miRNAs to Prevent Drought Stress in Solanum tuberosum . In: Duque, P. (eds) Environmental Responses in Plants. Methods in Molecular Biology, vol 1398. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3356-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3356-3_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3354-9

  • Online ISBN: 978-1-4939-3356-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics