Skip to main content

Assessing Drought Responses Using Thermal Infrared Imaging

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1398))

Abstract

Canopy temperature, a surrogate for stomatal conductance, is shown to be a good indicator of plant water status and a potential tool for phenotyping and irrigation scheduling. Measurement of stomatal conductance and leaf temperature has traditionally been done by using porometers or gas exchange analyzers and fine-wire thermocouples attached to the leaves, which are labor intensive and point measurements. The advent of remote or proximal thermal sensing technologies has provided the potential for scaling up to leaves, plants, and canopies. Thermal cameras with a temperature resolution of <0.1 K now allow one to study the temperature variation within and between plants. This chapter discusses some applications of infrared thermography for assessing drought and other abiotic and biotic stress and outlines some of the main factors that need to be considered when applying this to the study of leaf or canopy temperature whether in controlled environments or in the field.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wilkinson S, Davies WJ (2002) ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ 25(2):195–210. doi:10.1046/j.0016-8025.2001.00824.x

    Article  CAS  PubMed  Google Scholar 

  2. Jones HG (2004) Irrigation scheduling: advantages and pitfalls of plant-based methods. J Exp Bot 55(407):2427–2436. doi:10.1093/jxb/erh213

    Article  CAS  PubMed  Google Scholar 

  3. Jones HG (1999) Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agric For Meteorol 95(3):139–149. doi:10.1016/s0168-1923(99)00030-1

    Article  Google Scholar 

  4. Jones HG, Serraj R, Loveys BR, Xiong L, Wheaton A, Price AH (2009) Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct Plant Biol 36:978–989

    Article  Google Scholar 

  5. Prashar A, Yildiz J, McNicol JW, Bryan GJ, Jones HG (2013) Infra-red thermography for high throughput field phenotyping in Solanum tuberosum. PLoS One 8(6):e65816–65811–65819. doi:10.1371/journal.pone.0065816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Grant OM, Tronina L, Jones HG, Chaves MM (2007) Exploring thermal imaging variables for the detection of stress responses in grapevine under different irrigation regimes. J Exp Bot 58:815–825. doi:10.1093/jxb/erl153

    Article  CAS  PubMed  Google Scholar 

  7. Meron M, Tsipris J, Orlov V, Alchanatis V, Cohen Y (2010) Crop water stress mapping for site-specific irrigation by thermal imagery and artificial reference surfaces. Precis Agric 11:148–162

    Article  Google Scholar 

  8. Amani I, Fischer RA, Reynolds MF (1996) Evaluation of canopy temperature as a screening tool for heat tolerance in spring wheat. J Agron Crop Sci 176:119–129

    Article  Google Scholar 

  9. Lindenthal M, Steiner U, Dehne HW, Oerke EC (2005) Effect of downy mildew development on transpiration of cucumber leaves visualized by digital infrared thermography. Phytopathology 95(3):233–240

    Article  PubMed  Google Scholar 

  10. Stoll M, Schultz HR, Baecker G, Berkelmann-Loehnertz B (2008) Early pathogen detection under different water status and the assessment of spray application in vineyards through the use of thermal imagery. Precis Agric 9(6):407–417. doi:10.1007/s11119-008-9084-y

    Article  Google Scholar 

  11. Jones HG (2004) Application of thermal imaging and infrared sensing in plant physiology and ecophysiology. In: Callow JA (ed) Advances in botanical research incorporating advances in plant pathology, vol 41. Advances in botanical research. pp 107–163

    Google Scholar 

  12. Pinter PJ, Stanghellini ME, Reginato RJ, Idso SB, Jenkins AD, Jackson RD (1979) Remote detection of biological stresses in plants with infrared thermography. Science 205(4406):585–586. doi:10.1126/science.205.4406.585

    Article  PubMed  Google Scholar 

  13. Jones HG (2014) Plants and microclimate: a quantitative approach to environmental plant physiology, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  14. Prashar A, Jones HG (2014) Infra-red thermography as a high-throughput tool for field phenotyping. Agronomy 4(3):397–417

    Article  Google Scholar 

  15. Merlot S, Mustilli AC, Genty B, North H, Lefebvre V, Sotta B, Vavasseur A, Giraudat J (2002) Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J 30(5):601–609. doi:10.1046/j.1365-313X.2002.01322.x

    Article  CAS  PubMed  Google Scholar 

  16. Rebetzke GJ, Rattey AR, Farquhar GD, Richards RA, Condon AG (2013) Genomic regions for canopy temperature and their genetic association with stomatal conductance and grain yield in wheat. Funct Plant Biol 40(1):14–33. doi:10.1071/fp12184

    Article  CAS  Google Scholar 

  17. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. doi:10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  18. Wang X, Yang W, Wheaton A, Cooley N, Moran B (2010) Automated canopy temperature estimation via infrared thermography: A first step towards automated plant water stress monitoring. Comput Electron Agric 73(1):74–83, Doi: http://dx.doi.org/10.1016/j.compag.2010.04.007

    Article  Google Scholar 

  19. Leinonen I, Jones HG (2004) Combining thermal and visible imagery for estimating canopy temperature and identifying plant stress. J Exp Bot 55(401):1423–1431. doi:10.1093/jxb/erh146

    Article  CAS  PubMed  Google Scholar 

  20. Jones HG, Stoll M, Santos T, de Sousa C, Chaves MM, Grant OM (2002) Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine. J Exp Bot 53(378):2249–2260. doi:10.1093/jxb/erf083

    Article  CAS  PubMed  Google Scholar 

  21. Jones HG, Sirault XR (2014) Scaling of thermal images at different spatial resolution: the mixed pixel problem. Agronomy 4(3):380–396

    Article  Google Scholar 

  22. Guiliani R, Flore JA (2000) Potential use of infra-red thermometry for the detection of water stress in apple trees. Acta Horticult 537:383–392

    Article  Google Scholar 

  23. Jackson RD, Idso SB, Reginato RJ, Pinter PJ (1981) Canopy temperature as a crop water-stress indicator. Water Resour Res 17:1133–1138

    Article  Google Scholar 

  24. Idso SB, Reginato RJ, Jackson RD, Pinter PJ (1981) Foliage and air temperatures - evidence for a dynamic equivalence point. Agric Meteorol 24:223–226

    Article  Google Scholar 

  25. Jones HG (1999) Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces. Plant Cell Environ 22(9):1043–1055

    Article  Google Scholar 

  26. Leinonen I, Grant OM, Tagliavia CPP, Chaves MM, Jones HG (2006) Estimating stomatal conductance with thermal imagery. Plant Cell Environ 29(8):1508–1518. doi:10.1111/j.1365.3040.2006.01528.x

    Article  CAS  PubMed  Google Scholar 

  27. Guilioni L, Jones HG, Leinonen I, Lhomme JP (2008) On the relationships between stomatal resistance and leaf temperatures in thermography. Agric For Meteorol 148(11):1908–1912

    Article  Google Scholar 

  28. Jones HG, Vaughan RA (2010) Remote sensing of vegetation: principles, techniques, and applications. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the financial support of the Scottish Government Rural and Environmental Science and Analytical Services (RESAS) Division.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankush Prashar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Prashar, A., Jones, H.G. (2016). Assessing Drought Responses Using Thermal Infrared Imaging. In: Duque, P. (eds) Environmental Responses in Plants. Methods in Molecular Biology, vol 1398. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3356-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3356-3_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3354-9

  • Online ISBN: 978-1-4939-3356-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics