Skip to main content

Basic Techniques to Assess Seed Germination Responses to Abiotic Stress in Arabidopsis thaliana

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1398))

Abstract

The model organism Arabidopsis thaliana has been extensively used to unmask the molecular genetic signaling pathways controlling seed germination in plants. In Arabidopsis, the normal seed to seedling developmental transition involves testa rupture soon followed by endosperm rupture, radicle elongation, root hair formation, cotyledon expansion, and greening. Here we detail a number of basic procedures to assess Arabidopsis seed germination in response to different light (red and far-red pulses), temperature (seed thermoinhibition), and water potential (osmotic stress) environmental conditions. We also discuss the role of the endosperm and how its germination-repressive activity can be monitored genetically by means of a seed coat bedding assay. Finally we detail how to evaluate germination responses to changes in gibberellin (GA) and abscisic acid (ABA) levels by manipulating pharmacologically the germination medium.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Belin C, Lopez-Molina L (2008) Arabidopsis seed germination responses to osmotic stress involve the chromatin modifier PICKLE. Plant Signal Behav 3(7):478–479

    Article  PubMed Central  PubMed  Google Scholar 

  2. Muller K, Tintelnot S, Leubner-Metzger G (2006) Endosperm-limited Brassicaceae seed germination: abscisic acid inhibits embryo-induced endosperm weakening of Lepidium sativum (cress) and endosperm rupture of cress and Arabidopsis thaliana. Plant Cell Physiol 47(7):864–877

    Article  PubMed  Google Scholar 

  3. Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, Lopez-Molina L (2008) The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell 20(10):2729–2745. doi:10.1105/tpc.108.061515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Lopez-Molina L, Mongrand S, Chua NH (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci USA 98(8):4782–4787

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua NH (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J 32(3):317–328

    Article  CAS  PubMed  Google Scholar 

  6. Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  CAS  PubMed  Google Scholar 

  7. Olszewski N, Sun TP, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14(Suppl):S61–S80

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Bentsink L, Koornneef M (2009) Seed dormancy and germination. In: The Arabidopsis book. The American Society of Plant Biologists, pp 1–18. doi:10.1199/tab.0119

    Google Scholar 

  9. Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415. doi:10.1146/annurev.arplant.59.032607.092740

    Article  CAS  PubMed  Google Scholar 

  10. Holdsworth MJ, Bentsink L, Soppe WJ (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179(1):33–54, doi:NPH2437 [pii] 10.1111/j.1469-8137.2008.02437.x

    Article  CAS  PubMed  Google Scholar 

  11. Lee KP, Piskurewicz U, Tureckova V, Carat S, Chappuis R, Strnad M, Fankhauser C, Lopez-Molina L (2012) Spatially and genetically distinct control of seed germination by phytochromes A and B. Genes Dev 26(17):1984–1996. doi:10.1101/gad.194266.112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Shinomura T, Nagatani A, Chory J, Furuya M (1994) The induction of seed germination in Arabidopsis thaliana Is regulated principally by phytochrome B and secondarily by phytochrome A. Plant Physiol 104(2):363–371, doi:104/2/363 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Shinomura T, Nagatani A, Hanzawa H, Kubota M, Watanabe M, Furuya M (1996) Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proc Natl Acad Sci USA 93(15):8129–8133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Oh E, Kim J, Park E, Kim J-I, Kang C, Choi G (2004) PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana. Plant Cell 16(11):3045–3058. doi:10.1105/tpc.104.025163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Bethke PC, Libourel IG, Aoyama N, Chung YY, Still DW, Jones RL (2007) The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiol 143(3):1173–1188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Lee KP, Piskurewicz U, Tureckova V, Strnad M, Lopez-Molina L (2010) A seed coat bedding assay shows that RGL2-dependent release of abscisic acid by the endosperm controls embryo growth in Arabidopsis dormant seeds. Proc Natl Acad Sci USA 107(44):19108–19113. doi:10.1073/pnas.1012896107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Lee KP, Lopez-Molina L (2013) A seed coat bedding assay to genetically explore in vitro how the endosperm controls seed germination in Arabidopsis thaliana. J Vis Exp 9(81):e50732

    Google Scholar 

  18. Finkelstein RR, Lynch TJ (2000) Abscisic acid inhibition of radicle emergence but not seedling growth is suppressed by sugars. Plant Physiol 122(4):1179–1186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Lopez-Molina L, Chua NH (2000) A null mutation in a bZIP factor confers ABA-insensitivity in Arabidopsis thaliana. Plant Cell Physiol 41(5):541–547

    Article  CAS  PubMed  Google Scholar 

  20. Piskurewicz U, Tureckova V, Lacombe E, Lopez-Molina L (2009) Far-red light inhibits germination through DELLA-dependent stimulation of ABA synthesis and ABI3 activity. EMBO J 28(15):2259–2271. doi:10.1038/emboj.2009.170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Saito S, Okamoto M, Shinoda S, Kushiro T, Koshiba T, Kamiya Y, Hirai N, Todoroki Y, Sakata K, Nambara E, Mizutani M (2006) A plant growth retardant, uniconazole, is a potent inhibitor of ABA catabolism in Arabidopsis. Biosci Biotechnol Biochem 70(7):1731–1739

    Article  CAS  PubMed  Google Scholar 

  22. Piskurewicz U, Lopez-Molina L (2011) Isolation of genetic material from Arabidopsis seeds. Methods Mol Biol 773:151–164. doi:10.1007/978-1-61779-231-1_10

    Article  CAS  PubMed  Google Scholar 

  23. Vicient CM, Delseny M (1999) Isolation of total RNA from Arabidopsis thaliana seeds. Anal Biochem 268(2):412–413

    Article  CAS  PubMed  Google Scholar 

  24. Toh S, Imamura A, Watanabe A, Nakabayashi K, Okamoto M, Jikumaru Y, Hanada A, Aso Y, Ishiyama K, Tamura N, Iuchi S, Kobayashi M, Yamaguchi S, Kamiya Y, Nambara E, Kawakami N (2008) High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiol 146(3):1368–1385. doi:10.1104/pp. 107.113738

  25. Kendall SL, Hellwege A, Marriot P, Whalley C, Graham IA, Penfield S (2011) Induction of dormancy in Arabidopsis summer annuals requires parallel regulation of DOG1 and hormone metabolism by low temperature and CBF transcription factors. Plant Cell 23(7):2568–2580. doi:10.1105/tpc.111.087643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Endo A, Tatematsu K, Hanada K, Duermeyer L, Okamoto M, Yonekura-Sakakibara K, Saito K, Toyoda T, Kawakami N, Kamiya Y, Seki M, Nambara E (2012) Tissue-specific transcriptome analysis reveals cell wall metabolism, flavonol biosynthesis and defense responses are activated in the endosperm of germinating Arabidopsis thaliana seeds. Plant Cell Physiol 53(1):16–27, doi:pcr171 [pii] 10.1093/pcp/pcr171

    Article  CAS  PubMed  Google Scholar 

  27. Penfield S, Li Y, Gilday AD, Graham S, Graham IA (2006) Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm. Plant Cell 18(8):1887–1899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Tatematsu K, Nakabayashi K, Kamiya Y, Nambara E (2008) Transcription factor AtTCP14 regulates embryonic growth potential during seed germination in Arabidopsis thaliana. Plant J 53(1):42–52, doi:TPJ3308 [pii] 10.1111/j.1365-313X.2007.03308.x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Lopez-Molina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Piskurewicz, U., Lopez-Molina, L. (2016). Basic Techniques to Assess Seed Germination Responses to Abiotic Stress in Arabidopsis thaliana . In: Duque, P. (eds) Environmental Responses in Plants. Methods in Molecular Biology, vol 1398. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3356-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3356-3_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3354-9

  • Online ISBN: 978-1-4939-3356-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics