Skip to main content

In Vitro Approaches to Study Regulation of Hepatic Cytochrome P450 (CYP) 3A Expression by Paclitaxel and Rifampicin

  • Protocol
  • First Online:
Cancer Drug Resistance

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1395))

Abstract

Cancer is the second leading cause of mortality worldwide; however the response rate to chemotherapy treatment remains slow, mainly due to narrow therapeutic index and multidrug resistance. Paclitaxel (taxol) has a superior outcome in terms of response rates and progression-free survival. However, numerous cancer patients are resistant to this drug. In this investigation, we tested the hypothesis that induction of cytochrome P450 (Cyp)3a11 gene by paclitaxel is downregulated by the inflammatory mediator, lipopolysaccharide (LPS), and that the pro-inflammatory cytokine, tumor necrosis factor (TNF)-α, attenuates human CYP3A4 gene induction by rifampicin. Primary mouse hepatocytes were pretreated with LPS (1 μg/ml) for 10 min, followed by paclitaxel (20 μM) or vehicle for 24 h. RNA was extracted from the cells by trizol method followed by cDNA synthesis and analysis by real-time PCR. Paclitaxel significantly induced gene expression of Cyp3a11 (~30-fold) and this induction was attenuated in LPS-treated samples. Induction and subsequent downregulation of CYP3A enzyme can impact paclitaxel treatment in cancer patients where inflammatory mediators are activated. It has been shown that the nuclear receptor, pregnane X receptor (PXR), plays a role in the induction of CYP enzymes. In order to understand the mechanisms of regulation of human CYP3A4 gene, we co-transfected HepG2 cells (human liver cell line) with CYP3A4-luciferase construct and a PXR expression plasmid. The cells were then treated with the pro-inflammatory cytokine, TNFα, followed by the prototype CYP3A inducer rifampicin. It is well established that rifampicin activates PXR, leading to CYP3A4 induction. We found that induction of CYP3A4-luciferase activity by rifampicin was significantly attenuated by TNFα. In conclusion, we describe herein several in vitro approaches entailing primary and cultured hepatocytes, real-time PCR, and transcriptional activation (transfection) assays to investigate the molecular regulation of CYP3A, which plays a pivotal role in the metabolism of numerous chemotherapeutic drugs. Genetic or drug-induced variation in CYP3A and/or PXR expression could contribute to drug resistance to chemotherapeutic agents in cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McGuire WP, Hoskins WJ, Brady MF, Kucera PR, Partridge EE, Look KY, Clarke-Pearson DL, Davidson M (1996) Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. N Engl J Med 334:1–6

    Article  CAS  PubMed  Google Scholar 

  2. Brockstein B, Haraf DJ, Stenson K, Fasanmade A, Stupp R, Glisson B, Lippman SM, Ratain MJ, Sulzen L, Klepsch A, Weichselbaum RR, Vokes EE (1998) Phase I study of concomitant chemoradiotherapy with paclitaxel, fluorouracil, and hydroxyurea with granulocyte colony-stimulating factor support for patients with poor-prognosis cancer of the head and neck. J Clin Oncol 16:735–744

    CAS  PubMed  Google Scholar 

  3. McGuire WP, Blessing JA, Moore D, Lentz SS, Photopulos G (1996) Paclitaxel has moderate activity in squamous cervix cancer. A Gynecologic Oncology Group study. J Clin Oncol 14:792–795

    CAS  PubMed  Google Scholar 

  4. Johnson DH, Paul DM, Hande KR, Shyr Y, Blanke C, Murphy B, Lewis M, De Vore RF III (1996) Paclitaxel plus carboplatin in advanced non-small-cell lung cancer: a phase II trial. J Clin Oncol 14:2054–2060

    CAS  PubMed  Google Scholar 

  5. Bolis G, Scarfone G, Polverino G, Raspagliesi F, Tateo S, Richiardi G, Melpignano M, Franchi M, Mangili G, Presti M, Villa A, Conta E, Guarnerio P, Cipriani S, Parazzini F (2004) Paclitaxel 175 or 225 mg per meters squared with carboplatin in advanced ovarian cancer: a randomized trial. J Clin Oncol 22:686–690

    Article  CAS  PubMed  Google Scholar 

  6. Monsarrat B, Chatelut E, Royer I, Alvinerie P, Dubois J, Dezeuse A, Roche H, Cros S, Wright M, Canal P (1998) Modification of paclitaxel metabolism in a cancer patient by induction of cytochrome P450 3A4. Drug Metab Dispos 26:229–233

    CAS  PubMed  Google Scholar 

  7. Li AP, Kaminski DL, Rasmussen A (1995) Substrates of human hepatic cytochrome P450 3A4. Toxicology 104:1–8

    Article  CAS  PubMed  Google Scholar 

  8. Walker D, Flinois JP, Monkman SC, Beloc C, Boddy AV, Cholerton S, Daly AK, Lind MJ, Pearson AD, Beaune PH et al (1994) Identification of the major human hepatic cytochrome P450 involved in activation and N-dechloroethylation of ifosfamide. Biochem Pharmacol 47:1157–1163

    Article  CAS  PubMed  Google Scholar 

  9. Marre F, Sanderink GJ, de Sousa G, Gaillard C, Martinet M, Rahmani R (1996) Hepatic biotransformation of docetaxel (Taxotere) in vitro: involvement of the CYP3A subfamily in humans. Cancer Res 56:1296–1302

    CAS  PubMed  Google Scholar 

  10. Yao D, Ding S, Burchell B, Wolf CR, Friedberg T (2000) Detoxication of vinca alkaloids by human P450 CYP3A4-mediated metabolism: implications for the development of drug resistance. J Pharmacol Exp Ther 294:387–395

    CAS  PubMed  Google Scholar 

  11. Mathijssen RH, van Alphen RJ, Verweij J, Loos WJ, Nooter K, Stoter G, Sparreboom A (2001) Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer Res 7:2182–2194

    CAS  PubMed  Google Scholar 

  12. Relling MV, Nemec J, Schuetz EG, Schuetz JD, Gonzalez FJ, Korzekwa KR (1994) O-demethylation of epipodophyllotoxins is catalyzed by human cytochrome P450 3A4. Mol Pharmacol 45:352–358

    CAS  PubMed  Google Scholar 

  13. Rodriguez-Antona C, Ingelman-Sundberg M (2006) Cytochrome P450 pharmacogenetics and cancer. Oncogene 25:1679–1691

    Article  CAS  PubMed  Google Scholar 

  14. Miyoshi Y, Taguchi T, Kim SJ, Tamaki Y, Noguchi S (2005) Prediction of response to docetaxel by immunohistochemical analysis of CYP3A4 expression in human breast cancers. Breast Cancer 12:11–15

    Article  PubMed  Google Scholar 

  15. Petros WP, Hopkins PJ, Spruill S, Broadwater G, Vredenburgh JJ, Colvin OM, Peters WP, Jones RB, Hall J, Marks JR (2005) Associations between drug metabolism genotype, chemotherapy pharmacokinetics, and overall survival in patients with breast cancer. J Clin Oncol 23:6117–6125

    Article  CAS  PubMed  Google Scholar 

  16. Kostrubsky VE, Lewis LD, Strom SC, Wood SG, Schuetz EG, Schuetz JD, Sinclair PR, Wrighton SA, Sinclair JF (1998) Induction of cytochrome P4503A by taxol in primary cultures of human hepatocytes. Arch Biochem Biophys 355:131–136

    Article  CAS  PubMed  Google Scholar 

  17. Bahadur N, Leathart JB, Mutch E, Steimel-Crespi D, Dunn SA, Gilissen R, Houdt JV, Hendrickx J, Mannens G, Bohets H, Williams FM, Armstrong M, Crespi CL, Daly AK (2002) CYP2C8 polymorphisms in Caucasians and their relationship with paclitaxel 6alpha-hydroxylase activity in human liver microsomes. Biochem Pharmacol 64:1579–1589

    Article  CAS  PubMed  Google Scholar 

  18. Taniguchi R, Kumai T, Matsumoto N, Watanabe M, Kamio K, Suzuki S, Kobayashi S (2005) Utilization of human liver microsomes to explain individual differences in paclitaxel metabolism by CYP2C8 and CYP3A4. J Pharmacol Sci 97:83–90

    Article  CAS  PubMed  Google Scholar 

  19. Harmsen S, Meijerman I, Beijnen JH, Schellens JH (2007) The role of nuclear receptors in pharmacokinetic drug-drug interactions in oncology. Cancer Treat Rev 33:369–380

    Article  CAS  PubMed  Google Scholar 

  20. Bertilsson G, Heidrich J, Svensson K, Asman M, Jendeberg L, Sydow-Backman M, Ohlsson R, Postlind H, Blomquist P, Berkenstam A (1998) Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc Natl Acad Sci U S A 95:12208–12213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lehmann JM, McKee DD, Watson MA, Willson TM, Moore JT, Kliewer SA (1998) The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J Clin Invest 102:1016–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Goodwin B, Hodgson E, Liddle C (1999) The orphan human pregnane X receptor mediates the transcriptional activation of CYP3A4 by rifampicin through a distal enhancer module. Mol Pharmacol 56:1329–1339

    CAS  PubMed  Google Scholar 

  23. Poso A, Honkakoski P (2006) Ligand recognition by drug-activated nuclear receptors PXR and CAR: structural, site-directed mutagenesis and molecular modeling studies. Mini Rev Med Chem 6:937–947

    Article  CAS  PubMed  Google Scholar 

  24. Synold TW, Dussault I, Forman BM (2001) The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat Med 7:584–590

    Article  CAS  PubMed  Google Scholar 

  25. Raynal C, Pascussi JM, Leguelinel G, Breuker C, Kantar J, Lallemant B, Poujol S, Bonnans C, Joubert D, Hollande F, Lumbroso S, Brouillet JP, Evrard A (2010) Pregnane X Receptor (PXR) expression in colorectal cancer cells restricts irinotecan chemosensitivity through enhanced SN-38 glucuronidation. Mol Cancer 9:46

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nallani SC, Goodwin B, Maglich JM, Buckley DJ, Buckley AR, Desai PB (2003) Induction of cytochrome P450 3A by paclitaxel in mice: pivotal role of the nuclear xenobiotic receptor, pregnane X receptor. Drug Metab Dispos 31:681–684

    Article  CAS  PubMed  Google Scholar 

  27. Ding X, Staudinger JL (2005) Induction of drug metabolism by forskolin: the role of the pregnane X receptor and the protein kinase a signal transduction pathway. J Pharmacol Exp Ther 312:849–856

    Article  CAS  PubMed  Google Scholar 

  28. Ghose R, White D, Guo T, Vallejo J, Karpen SJ (2008) Regulation of hepatic drug-metabolizing enzyme genes by Toll-like receptor 4 signaling is independent of Toll-interleukin 1 receptor domain-containing adaptor protein. Drug Metab Dispos 36:95–101

    Article  CAS  PubMed  Google Scholar 

  29. Ghose R, Guo T, Vallejo JG, Gandhi A (2011) Differential role of Toll-interleukin 1 receptor domain-containing adaptor protein in Toll-like receptor 2-mediated regulation of gene expression of hepatic cytokines and drug-metabolizing enzymes. Drug Metab Dispos 39:874–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tirona RG, Lee W, Leake BF, Lan LB, Cline CB, Lamba V, Parviz F, Duncan SA, Inoue Y, Gonzalez FJ, Schuetz EG, Kim RB (2003) The orphan nuclear receptor HNF4alpha determines PXR- and CAR-mediated xenobiotic induction of CYP3A4. Nat Med 9:220–224

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants R21-DA035751 to RG and R01-ES-009132, R01-HL-112516, and R01-ES-019689 to BM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhagavatula Moorthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ghose, R., Mallick, P., Taneja, G., Chu, C., Moorthy, B. (2016). In Vitro Approaches to Study Regulation of Hepatic Cytochrome P450 (CYP) 3A Expression by Paclitaxel and Rifampicin. In: Rueff, J., Rodrigues, A. (eds) Cancer Drug Resistance. Methods in Molecular Biology, vol 1395. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3347-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3347-1_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3345-7

  • Online ISBN: 978-1-4939-3347-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics