Skip to main content

Monitoring PPARG-Induced Changes in Glycolysis by Selected Reaction Monitoring Mass Spectrometry

  • Protocol
  • First Online:
Proteomics in Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1394))

  • 3479 Accesses

Abstract

As cells develop and differentiate, they change in function and morphology, which often precede earlier changes in signaling and metabolic control. Here we present a selected reaction monitoring (SRM) approach which allows for the parallel quantification of metabolic regulators and their downstream targets.

In particular we explain and describe how to monitor abundance changes of glycolytic enzymes upon PPARγ activation by using a label-free or a stable isotope-labeled standard peptide (SIS peptides) approach applying triple-quadrupole mass spectrometry. We further outline how to fractionate the cell lysate into cytosolic and nuclear fractions to enhance the sensitivity of the measurements and to investigate the dynamic concentration changes in those compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89(6):2548–2556. doi:10.1210/jc.2004-0395

    Article  CAS  PubMed  Google Scholar 

  2. Rosen ED, Spiegelman BM (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444(7121):847–853. doi:10.1038/nature05483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tilg H, Moschen AR (2008) Inflammatory mechanisms in the regulation of insulin resistance. Mol Med 14(3–4):222–231. doi:10.2119/2007-00119.Tilg

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hajer GR, van Haeften TW, Visseren FL (2008) Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J 29(24):2959–2971. doi:10.1093/eurheartj/ehn387

    Article  CAS  PubMed  Google Scholar 

  5. Van Gaal LF, Mertens IL, De Block CE (2006) Mechanisms linking obesity with cardiovascular disease. Nature 444(7121):875–880. doi:10.1038/nature05487

    Article  PubMed  Google Scholar 

  6. Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444(7121):840–846. doi:10.1038/nature05482

    Article  CAS  PubMed  Google Scholar 

  7. Olshansky SJ, Passaro DJ, Hershow RC et al (2005) A potential decline in life expectancy in the United States in the 21st century. N Engl J Med 352(11):1138–1145. doi:10.1056/NEJMsr043743

    Article  CAS  PubMed  Google Scholar 

  8. Rosen ED, Walkey CJ, Puigserver P et al (2000) Transcriptional regulation of adipogenesis. Genes Dev 14(11):1293–1307

    CAS  PubMed  Google Scholar 

  9. Tontonoz P, Hu E, Spiegelman BM (1994) Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79(7):1147–1156

    Article  CAS  PubMed  Google Scholar 

  10. Rosen ED, Sarraf P, Troy AE et al (1999) PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 4(4):611–617

    Article  CAS  PubMed  Google Scholar 

  11. Wu Z, Rosen ED, Brun R et al (1999) Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol Cell 3(2):151–158

    Article  CAS  PubMed  Google Scholar 

  12. Rosen ED, Hsu CH, Wang X et al (2002) C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes Dev 16(1):22–26. doi:10.1101/gad.948702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Park BO, Ahrends R, Teruel MN (2012) Consecutive positive feedback loops create a bistable switch that controls preadipocyte-to-adipocyte conversion. Cell Rep 2(4):976–990. doi:10.1016/j.celrep.2012.08.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ahrends R, Ota A, Kovary KM et al (2014) Controlling low rates of cell differentiation through noise and ultrahigh feedback. Science 344(6190):1384–1389. doi:10.1126/science.1252079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barak Y, Nelson MC, Ong ES et al (1999) PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell 4(4):585–595

    Article  CAS  PubMed  Google Scholar 

  16. Kubota N, Terauchi Y, Miki H et al (1999) PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell 4(4):597–609

    Article  CAS  PubMed  Google Scholar 

  17. Agarwal AK, Garg A (2002) A novel heterozygous mutation in peroxisome proliferator-activated receptor-gamma gene in a patient with familial partial lipodystrophy. J Clin Endocrinol Metab 87(1):408–411. doi:10.1210/jcem.87.1.8290

    CAS  PubMed  Google Scholar 

  18. Hegele RA, Cao H, Frankowski C et al (2002) PPARG F388L, a transactivation-deficient mutant, in familial partial lipodystrophy. Diabetes 51(12):3586–3590

    Article  CAS  PubMed  Google Scholar 

  19. Savage DB, Tan GD, Acerini CL et al (2003) Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-gamma. Diabetes 52(4):910–917

    Article  CAS  PubMed  Google Scholar 

  20. Forman BM, Tontonoz P, Chen J et al (1995) 15-deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 83(5):803–812

    Article  CAS  PubMed  Google Scholar 

  21. Lehmann JM, Moore LB, Smith-Oliver TA et al (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 270(22):12953–12956

    Article  CAS  PubMed  Google Scholar 

  22. Mikkelsen TS, Xu Z, Zhang X et al (2010) Comparative epigenomic analysis of murine and human adipogenesis. Cell 143(1):156–169. doi:10.1016/j.cell.2010.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Masters C, Reid S, Don M (1987) Glycolysis—new concepts in an old pathway. Mol Cell Biochem 76(1):3–14. doi:10.1007/BF00219393

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Ahrends .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hentschel, A., Ahrends, R. (2016). Monitoring PPARG-Induced Changes in Glycolysis by Selected Reaction Monitoring Mass Spectrometry. In: Reinders, J. (eds) Proteomics in Systems Biology. Methods in Molecular Biology, vol 1394. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3341-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3341-9_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3339-6

  • Online ISBN: 978-1-4939-3341-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics