Skip to main content

Selected Reaction Monitoring to Measure Proteins of Interest in Complex Samples: A Practical Guide

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1394))

Abstract

Biology and especially systems biology projects increasingly require the capability to detect and quantify specific sets of proteins across multiple samples, for example the components of a biological pathway through a set of perturbation-response experiments. Targeted proteomics based on selected reaction monitoring (SRM) has emerged as an ideal tool to this purpose, and complements the discovery capabilities of shotgun proteomics methods. SRM experiments rely on the development of specific, quantitative mass spectrometric assays for each protein of interest and their application to the quantification of the protein set in various biological samples. SRM measurements are multiplexed, namely, multiple proteins can be quantified simultaneously, and are characterized by a high reproducibility and a broad dynamic range. We provide here a practical guide to the development of SRM assays targeting a set of proteins of interest and to their application to complex biological samples.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  CAS  PubMed  Google Scholar 

  2. Picotti P, Aebersold R (2012) Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 9:555–566

    Article  CAS  PubMed  Google Scholar 

  3. Soste M, Hrabakova R, Wanka S et al (2014) A sentinel protein assay for simultaneously quantifying cellular processes. Nat Methods 11:1045–1048

    Article  CAS  PubMed  Google Scholar 

  4. Kusebauch U, Deutsch EW, Campbell DS et al (2014) Using PeptideAtlas, SRMAtlas, and PASSEL: comprehensive resources for discovery and targeted proteomics. Curr Protoc Bioinformatics 46:13.25.11–13.25.28

    Google Scholar 

  5. MacLean B, Tomazela DM, Shulman N et al (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26:966–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reiter L, Rinner O, Picotti P et al (2011) mProphet: automated data processing and statistical validation for large-scale SRM experiments. Nat Methods 8:430–435

    Article  CAS  PubMed  Google Scholar 

  7. Bereman MS, MacLean B, Tomazela DM et al (2012) The development of selected reaction monitoring methods for targeted proteomics via empirical refinement. Proteomics 12:1134–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mallick P, Schirle M, Chen SS et al (2007) Computational prediction of proteotypic peptides for quantitative proteomics. Nat Biotechnol 25:125–131

    Article  CAS  PubMed  Google Scholar 

  9. Fusaro VA, Mani DR, Mesirov JP et al (2009) Prediction of high-responding peptides for targeted protein assays by mass spectrometry. Nat Biotechnol 27:190–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qeli E, Omasits U, Goetze S et al (2014) Improved prediction of peptide detectability for targeted proteomics using a rank-based algorithm and organism-specific data. J Proteomics 108:269–283

    Article  CAS  PubMed  Google Scholar 

  11. Mohammed Y, Domanski D, Jackson AM et al (2014) PeptidePicker: a scientific workflow with web interface for selecting appropriate peptides for targeted proteomics experiments. J Proteomics 106:151–161

    Article  CAS  PubMed  Google Scholar 

  12. Deutsch EW, Lam H, Aebersold R (2008) PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows. EMBO Rep 9:429–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Whiteaker JR, Halusa GN, Hoofnagle AN et al (2014) CPTAC assay portal: a repository of targeted proteomic assays. Nat Methods 11:703–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sharma V, Eckels J, Taylor GK et al (2014) Panorama: a targeted proteomics knowledge base. J Proteome Res 13:4505–4510

    Article  Google Scholar 

  15. Picotti P, Rinner O, Stallmach R et al (2010) High-throughput generation of selected reaction-monitoring assays for proteins and proteomes. Nat Methods 7:43–46

    Article  CAS  PubMed  Google Scholar 

  16. Stergachis AB, MacLean B, Lee K et al (2011) Rapid empirical discovery of optimal peptides for targeted proteomics. Nat Methods 8:1041–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Choi M, Chang CY, Clough T et al (2014) MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinformatics 30:2524–2526

    Article  CAS  PubMed  Google Scholar 

  18. Escher C, Reiter L, MacLean B et al (2012) Using iRT, a normalized retention time for more targeted measurement of peptides. Proteomics 12:1111–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. de Graaf EL, Altelaar AF, van Breukelen B et al (2011) Improving SRM assay development: a global comparison between triple quadrupole, ion trap, and higher energy CID peptide fragmentation spectra. J Proteome Res 10:4334–4341

    Article  PubMed  Google Scholar 

  20. Maclean B, Tomazella DM, Abatiello SE et al (2010) Effect of collision energy optimization on the measurement of peptides by selected reaction monitoring (SRM) mass spectrometry. Anal Chem 82:10116–10124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Paul J. Boersema and Martin Soste (ETH Zurich) for insightful discussions. We thank Brendan MacLean (University of Washington) for critical reading of the manuscript. P.P. is supported by an EU-FP7 ERC Starting Grant (FP7-ERC-StG-337965), by a FP7-Reintegration grant (FP7-PEOPLE-2010-RG-277147), by a Professorship grant from the Swiss National Science Foundation (grant PP00P3_133670), and by a Promedica Stiftung (grant 2-70669-11). Y.F. is supported by an ETH Research Grant (grant 4412-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Picotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Feng, Y., Picotti, P. (2016). Selected Reaction Monitoring to Measure Proteins of Interest in Complex Samples: A Practical Guide. In: Reinders, J. (eds) Proteomics in Systems Biology. Methods in Molecular Biology, vol 1394. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3341-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3341-9_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3339-6

  • Online ISBN: 978-1-4939-3341-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics