Skip to main content

Interpretation of Quantitative Shotgun Proteomic Data

  • Protocol
  • First Online:
Book cover Proteomics in Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1394))

Abstract

In quantitative proteomics, large lists of identified and quantified proteins are used to answer biological questions in a systemic approach. However, working with such extensive datasets can be challenging, especially when complex experimental designs are involved. Here, we demonstrate how to post-process large quantitative datasets, detect proteins of interest, and annotate the data with biological knowledge. The protocol presented can be achieved without advanced computational knowledge thanks to the user-friendly Perseus interface (available from the MaxQuant website, www.maxquant.org). Various visualization techniques facilitating the interpretation of quantitative results in complex biological systems are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  CAS  PubMed  Google Scholar 

  2. Olsen JV, Mann M (2013) Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol Cell Proteomics 12:3444–3452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Altelaar AF, Munoz J, Heck AJ (2013) Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet 14:35–48

    Article  CAS  PubMed  Google Scholar 

  4. Vaudel M, Sickmann A, Martens L (2010) Peptide and protein quantification: a map of the minefield. Proteomics 10:650–670

    Article  CAS  PubMed  Google Scholar 

  5. Bantscheff M, Lemeer S, Savitski MM et al (2012) Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem 404:939–965

    Article  CAS  PubMed  Google Scholar 

  6. Bantscheff M, Schirle M, Sweetman G et al (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389:1017–1031

    Article  CAS  PubMed  Google Scholar 

  7. Vaudel M, Sickmann A, Martens L (2014) Introduction to opportunities and pitfalls in functional mass spectrometry based proteomics. Biochim Biophys Acta 1844:12–20

    Article  CAS  PubMed  Google Scholar 

  8. Aasebo E, Vaudel M, Mjaavatten O et al (2014) Performance of super-SILAC based quantitative proteomics for comparison of different acute myeloid leukemia (AML) cell lines. Proteomics 14:1971–1976

    Article  CAS  PubMed  Google Scholar 

  9. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  CAS  PubMed  Google Scholar 

  10. Vizcaino JA, Deutsch EW, Wang R et al (2014) ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol 32:223–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Martens L, Hermjakob H, Jones P et al (2005) PRIDE: the proteomics identifications database. Proteomics 5:3537–3545

    Article  CAS  PubMed  Google Scholar 

  12. Kohlbacher O, Reinert K, Gropl C et al (2007) TOPP—the OpenMS proteomics pipeline. Bioinformatics 23:e191–e197

    Article  CAS  PubMed  Google Scholar 

  13. Bertsch A, Gropl C, Reinert K et al (2011) OpenMS and TOPP: open source software for LC-MS data analysis. Methods Mol Biol 696:353–367

    Article  CAS  PubMed  Google Scholar 

  14. Deutsch EW, Mendoza L, Shteynberg D et al (2010) A guided tour of the Trans-Proteomic Pipeline. Proteomics 10:1150–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vaudel M, Burkhart JM, Zahedi RP et al (2015) PeptideShaker enables reanalysis of MS-derived proteomics data sets. Nature biotechnology 33:22–24

    Article  CAS  PubMed  Google Scholar 

  16. Cox J, Mann M (2012) 1D and 2D annotation enrichment: a statistical method integrating quantitative proteomics with complementary high-throughput data. BMC Bioinformatics 13(Suppl 16):S12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

F.S.B. and F.S. acknowledge the support by the Norwegian Cancer Society. H.B. is supported by the Research Council of Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Vaudel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Aasebø, E., Berven, F.S., Selheim, F., Barsnes, H., Vaudel, M. (2016). Interpretation of Quantitative Shotgun Proteomic Data. In: Reinders, J. (eds) Proteomics in Systems Biology. Methods in Molecular Biology, vol 1394. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3341-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3341-9_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3339-6

  • Online ISBN: 978-1-4939-3341-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics