Skip to main content

From Phosphoproteome to Modeling of Plant Signaling Pathways

  • Protocol
  • First Online:
Proteomics in Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1394))

  • 3460 Accesses

Abstract

Quantitative proteomic experiments in recent years became almost routine in many aspects of biology. Particularly the quantification of peptides and corresponding phosphorylated counterparts from a single experiment is highly important for understanding of dynamics of signaling pathways. We developed an analytical method to quantify phosphopeptides (pP) in relation to the quantity of the corresponding non-phosphorylated parent peptides (P). We used mixed-mode solid-phase extraction to purify total peptides from tryptic digest and separated them from most of the phosphorous-containing compounds (e.g., phospholipids, nucleotides) which enhances pP enrichment on TiO2 beads. Phosphoproteomic data derived with this designed method allows quantifying pP/P stoichiometry, and qualifying experimental data for mathematical modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klipp E, Liebermeister W (2006) Mathematical modeling of intracellular signaling pathways. BMC Neurosci 7(Suppl 1):S10. doi:10.1186/1471-2202-7-S1-S10

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mariottini C, Iyengar R (2013) Chapter 16—system biology of cell signaling. In: Walhout AJM, Vidal M, Dekker J (eds) Handbook of systems biology. Academic, San Diego, pp 311–327

    Chapter  Google Scholar 

  3. Duan G, Walther D, Schulze W (2013) Reconstruction and analysis of nutrient-induced phosphorylation networks in Arabidopsis thaliana. Front Plant Sci 4:540. doi:10.3389/fpls.2013.00540

    Article  PubMed  PubMed Central  Google Scholar 

  4. Niittylä T, Fuglsang AT, Palmgren MG et al (2007) Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of arabidopsis. Mol Cell Proteomics 6(10):1711–1726. doi:10.1074/mcp.M700164-MCP200

    Article  PubMed  Google Scholar 

  5. Schulze WX (2010) Proteomics approaches to understand protein phosphorylation in pathway modulation. Curr Opin Plant Biol 13(3):279–286. doi:10.1016/j.pbi.2009.12.008

    Article  Google Scholar 

  6. Blagoev B, Ong S-E, Kratchmarova I et al (2004) Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat Biotechnol 22(9):1139–1145. doi:10.1038/nbt1005

    Article  CAS  PubMed  Google Scholar 

  7. Kholodenko BN, Hoek JB, Westerhoff HV et al (1997) Quantification of information transfer via cellular signal transduction pathways. FEBS Lett 414(2):430–434. doi:10.1016/S0014-5793(97)01018-1

    Article  CAS  PubMed  Google Scholar 

  8. Hein MY, Sharma K, Cox J et al (2013) Chapter 1—proteomic analysis of cellular systems. In: Walhout AJM, Vidal M, Dekker J (eds) Handbook of systems biology. Academic, San Diego, pp 3–25

    Chapter  Google Scholar 

  9. Cox J, Mann M (2011) Quantitative, high-resolution proteomics for data-driven systems biology. Annu Rev Biochem 80(1):273–299. doi:10.1146/annurev-biochem-061308-093216

    Article  CAS  PubMed  Google Scholar 

  10. Choudhary C, Mann M (2010) Decoding signalling networks by mass spectrometry-based proteomics. Nat Rev Mol Cell Biol 11(6):427–439. doi:10.1038/nrm2900

    Article  CAS  PubMed  Google Scholar 

  11. Altelaar AFM, Munoz J, Heck AJR (2013) Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet 14(1):35–48. doi:10.1038/nrg3356

    Article  CAS  PubMed  Google Scholar 

  12. Olsen J, Macek B (2009) High accuracy mass spectrometry in large-scale analysis of protein phosphorylation. In: Lipton M, Paša-Tolic L (eds) Mass spectrometry of proteins and peptides. Humana Press, Totowa, NJ, pp 131–142

    Chapter  Google Scholar 

  13. Schmelzle K, White FM (2006) Phosphoproteomic approaches to elucidate cellular signaling networks. Curr Opin Biotechnol 17(4):406–414. doi:10.1016/j.copbio.2006.06.004

    Article  CAS  PubMed  Google Scholar 

  14. Larsen MR, Thingholm TE, Jensen ON et al (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4(7):873–886. doi:10.1074/mcp.T500007-MCP200

    Article  CAS  PubMed  Google Scholar 

  15. Wisniewski JR, Zougman A, Nagaraj N et al (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359–362. doi:10.1038/nmeth.1322

    Article  CAS  PubMed  Google Scholar 

  16. Nakagami H (2014) StageTip-based HAMMOC, an efficient and inexpensive phosphopeptide enrichment method for plant shotgun phosphoproteomics. In: Jorrin-Novo JV et al (eds) Plant proteomics. Humana Press, New York, pp 595–607

    Google Scholar 

  17. Thingholm TE, Jorgensen TJD, Jensen ON et al (2006) Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat Protoc 1(4):1929–1935. doi:10.1038/nprot.2006.185

    Article  CAS  PubMed  Google Scholar 

  18. Beckers GM, Hoehenwarter W, Röhrig H et al (2014) Tandem metal-oxide affinity chromatography for enhanced depth of phosphoproteome analysis. In: Jorrin-Novo JV et al (eds) Plant proteomics. Humana Press, New York, pp 621–632

    Google Scholar 

  19. Colby T, Röhrig H, Harzen A et al (2011) Modified metal-oxide affinity enrichment combined with 2D-PAGE and analysis of phosphoproteomes. In: Dissmeyer N, Schnittger A (eds) Plant kinases. Humana Press, New York, pp 273–286

    Google Scholar 

  20. Pertl H, Himly M, Gehwolf R et al (2001) Molecular and physiological characterisation of a 14-3-3 protein from lily pollen grains regulating the activity of the plasma membrane H+ ATPase during pollen grain germination and tube growth. Planta 213(1):132–141. doi:10.1007/s004250000483

    Article  CAS  PubMed  Google Scholar 

  21. Pratt JM, Simpson DM, Doherty MK et al (2006) Multiplexed absolute quantification for proteomics using concatenated signature peptides encoded by QconCAT genes. Nat Protoc 1(2):1029–1043

    Article  CAS  PubMed  Google Scholar 

  22. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. doi:10.1038/nbt.1511

    Article  CAS  PubMed  Google Scholar 

  23. Steen H, Jebanathirajah JA, Springer M et al (2005) Stable isotope-free relative and absolute quantitation of protein phosphorylation stoichiometry by MS. Proc Natl Acad Sci U S A 102(11):3948–3953. doi:10.1073/pnas.0409536102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2(8):1896–1906

    Article  CAS  PubMed  Google Scholar 

  25. Meier-Schellersheim M, Xu X, Angermann B et al (2006) Key role of local regulation in chemosensing revealed by a new molecular interaction-based modeling method. PLoS Comput Biol 2(7), e82. doi:10.1371/journal.pcbi.0020082

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksim Zakhartsev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zakhartsev, M., Pertl-Obermeyer, H., Schulze, W.X. (2016). From Phosphoproteome to Modeling of Plant Signaling Pathways. In: Reinders, J. (eds) Proteomics in Systems Biology. Methods in Molecular Biology, vol 1394. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3341-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3341-9_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3339-6

  • Online ISBN: 978-1-4939-3341-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics