Skip to main content

Generation and Cryopreservation of Clinical Grade Wilms’ Tumor 1 mRNA-Loaded Dendritic Cell Vaccines for Cancer Immunotherapy

  • Protocol
  • First Online:
Tumor Immunology

Abstract

First described in the 1970s, dendritic cells (DC) are currently subjects of intense investigation to exploit their unique antigen-presenting and immunoregulatory capacities. In cancer, DC show promise to elicit or amplify immune responses directed against cancer cells by activating natural killer (NK) cells and tumor antigen-specific T cells. Wilms’ tumor 1 (WT1) protein is a tumor-associated antigen that is expressed in a majority of cancer types and has been designated as an antigen of major interest to be targeted in clinical cancer immunotherapy trials. In this chapter, we describe the generation, cryopreservation, and thawing of clinical grade autologous monocyte-derived DC vaccines that are loaded with WT1 by messenger RNA (mRNA) electroporation. This in-house-developed transfection method gives rise to presentation of multiple antigen epitopes and can be used for all patients without restriction of human leukocyte antigen (HLA) type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449:419–426

    Article  CAS  PubMed  Google Scholar 

  2. Cools N, Petrizzo A, Smits E et al (2011) Dendritic cells in the pathogenesis and treatment of human diseases: a Janus Bifrons? Immunotherapy 3:1203–1222

    Article  CAS  PubMed  Google Scholar 

  3. Lion E, Smits EL, Berneman ZN et al (2012) NK cells: key to success of DC-based cancer vaccines? Oncologist 17:1256–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Van Brussel I, Berneman ZN, Cools N (2012) Optimizing dendritic cell-based immunotherapy: tackling the complexity of different arms of the immune system. Mediators Inflamm 2012:690643

    PubMed  PubMed Central  Google Scholar 

  5. Anguille S, Lion E, Van den Bergh J et al (2013) Interleukin-15 dendritic cells as vaccine candidates for cancer immunotherapy. Hum Vaccin Immunother 9(9):1956–1961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Anguille S, Lion E, Tel J et al (2012) Interleukin-15-induced CD56(+) myeloid dendritic cells combine potent tumor antigen presentation with direct tumoricidal potential. PLoS One 7:e51851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Anguille S, Smits EL, Cools N et al (2009) Short-term cultured, interleukin-15 differentiated dendritic cells have potent immunostimulatory properties. J Transl Med 7:109

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mohamadzadeh M, Berard F, Essert G et al (2001) Interleukin 15 skews monocyte differentiation into dendritic cells with features of Langerhans cells. J Exp Med 194:1013–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Santini SM, Lapenta C, Santodonato L et al (2009) IFN-alpha in the generation of dendritic cells for cancer immunotherapy. Handb Exp Pharmacol 188:295–317

    Article  CAS  Google Scholar 

  10. Van Tendeloo VF, Ponsaerts P, Lardon F et al (2001) Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood 98:49–56

    Article  PubMed  Google Scholar 

  11. Ponsaerts P, Van Tendeloo VF, Cools N et al (2002) mRNA-electroporated mature dendritic cells retain transgene expression, phenotypical properties and stimulatory capacity after cryopreservation. Leukemia 16:1324–1330

    Article  CAS  PubMed  Google Scholar 

  12. Van Tendeloo VF, Ponsaerts P, Berneman ZN (2007) mRNA-based gene transfer as a tool for gene and cell therapy. Curr Opin Mol Ther 9:423–431

    PubMed  Google Scholar 

  13. Smits EL, Ponsaerts P, Van de Velde AL et al (2007) Proinflammatory response of human leukemic cells to dsRNA transfection linked to activation of dendritic cells. Leukemia 21:1691–1699

    Article  CAS  PubMed  Google Scholar 

  14. Smits EL, Anguille S, Cools N et al (2009) Dendritic cell-based cancer gene therapy. Hum Gene Ther 20:1106–1118

    Article  CAS  PubMed  Google Scholar 

  15. Van Nuffel AM, Corthals J, Neyns B et al (2010) Immunotherapy of cancer with dendritic cells loaded with tumor antigens and activated through mRNA electroporation. Methods Mol Biol 629:405–452

    PubMed  Google Scholar 

  16. Van Tendeloo VF, Van de Velde A, Van Driessche A et al (2010) Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Proc Natl Acad Sci U S A 107:13824–13829

    Article  PubMed  PubMed Central  Google Scholar 

  17. Van Gulck E, Vlieghe E, Vekemans M et al (2012) mRNA-based dendritic cell vaccination induces potent antiviral T-cell responses in HIV-1-infected patients. AIDS 26:F1–F12

    Article  PubMed  Google Scholar 

  18. Cheever MA, Allison JP, Ferris AS et al (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15:5323–5337

    Article  PubMed  Google Scholar 

  19. Anguille S, Van Tendeloo VF, Berneman ZN (2012) Leukemia-associated antigens and their relevance to the immunotherapy of acute myeloid leukemia. Leukemia 26:2186–2196

    Article  CAS  PubMed  Google Scholar 

  20. Van Driessche A, Berneman ZN, Van Tendeloo VF (2012) Active specific immunotherapy targeting the Wilms’ tumor protein 1 (WT1) for patients with hematological malignancies and solid tumors: lessons from early clinical trials. Oncologist 17:250–259

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ponsaerts P, Van Tendeloo VF, Berneman ZN (2003) Cancer immunotherapy using RNA-loaded dendritic cells. Clin Exp Immunol 134:378–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Van Driessche A, Van de Velde AL, Nijs G et al (2009) Clinical-grade manufacturing of autologous mature mRNA-electroporated dendritic cells and safety testing in acute myeloid leukemia patients in a phase I dose-escalation clinical trial. Cytotherapy 11:653–668

    Article  PubMed  Google Scholar 

  23. Willemen Y, Huizing MT, Smits E et al (2012) Open label phase I/II study of Wilms’ tumor gene 1 (WT1) mRNA-transfected autologous dendritic cell vaccination in patients with solid tumors. J Clin Oncol 30:e13051

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by research grants of the Research Foundation Flanders (FWO Vlaanderen), Foundation against Cancer (Stichting tegen Kanker), Vlaamse Liga tegen Kanker, National Cancer Plan Action 29, King Baudouin Foundation, and the Methusalem program of the Flemish Government. E.S. is a postdoctoral fellow of the Research Foundation Flanders. Y.W. is holder of a predoctoral fellowship of the Agency for Innovation by Science and Technology (IWT) and S.A. of an Emmanuel Van der Schueren fellowship of the Vlaamse Liga tegen Kanker.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelien L. J. M. Smits .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Smits, E.L.J.M. et al. (2016). Generation and Cryopreservation of Clinical Grade Wilms’ Tumor 1 mRNA-Loaded Dendritic Cell Vaccines for Cancer Immunotherapy. In: Bondanza, A., Casucci, M. (eds) Tumor Immunology. Methods in Molecular Biology, vol 1393. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3338-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3338-9_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3336-5

  • Online ISBN: 978-1-4939-3338-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics