Skip to main content

Human Microtumors Generated in 3D: Novel Tools for Integrated In Situ Studies of Cancer Immunotherapies

  • Protocol
  • First Online:
Tumor Immunology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1393))

Abstract

Cellular immunotherapy targeting human tumor antigens is a promising strategy to treat solid tumors. Yet clinical results of cellular immunotherapy are disappointing. Moreover, the currently available in vitro human tumor models are not designed to study the optimization of T-cell therapies of solid tumors. Here, we describe a novel assay for multiparametric in situ analysis of therapeutic effects on individual human three-dimensional (3D) tumors. In this assay, tumors of several millimeter diameter are generated from human cancer cell lines of different tumor entities in a collagen type I microenvironment. A newly developed approach for efficient morphological analysis reveals that these in vitro tumors resemble many characteristics of the corresponding clinical cancers such as histological features, immunohistochemical staining patterns, distinct tumor growth compartments and heterogeneous protein expression. To assess the response to therapy with tumor antigen specific T-cells, standardized protocols are described to determine T-cell infiltration and tumor destruction by monitoring soluble factors and tumor growth. Human tumors engineered in 3D collagen scaffolds are excellent in vitro surrogates for avascular tumor stages allowing integrated analyses of the antitumor efficacy of cancer specific immunotherapy in situ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klebanoff CA, Acquavella N, Yu Z et al (2011) Therapeutic cancer vaccines: are we there yet? Immunol Rev 239:27–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yang Q et al (2006) Morphological appearance, content of extracellular matrix and vascular density of lung metastases predicts permissiveness to infiltration by adoptively transferred natural killer and T cells. Cancer Immunol Immunother 55:699–707

    Article  CAS  PubMed  Google Scholar 

  3. Kuppen PJ et al (2001) Tumor structure and extracellular matrix as a possible barrier for therapeutic approaches using immune cells or adenoviruses in colorectal cancer. Histochem Cell Biol 115:67–72

    Article  CAS  PubMed  Google Scholar 

  4. Singh S, Ross SR, Acena M et al (1992) Stroma is critical for preventing or permitting immunological destruction of antigenic cancer cells. J Exp Med 175:139–146

    Article  CAS  PubMed  Google Scholar 

  5. Sutherland R (1988) Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240:177–184

    Article  CAS  PubMed  Google Scholar 

  6. Ghosh S et al (2006) Three-dimensional culture of melanoma cells profoundly affects gene expression profile: a high density oligonucleotide array study. J Cell Physiol 204:522–531

    Article  Google Scholar 

  7. Feder-Mengus C et al (2007) Multiple mechanisms underlie defective recognition of melanoma cells cultured in three-dimensional architectures by antigen-specific cytotoxic T lymphocytes. Br J Cancer 96:1072–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Vries TJ et al (2001) Expression of gp100, MART-1, tyrosinase, and S100 in paraffin-embedded primary melanomas and locoregional, lymph node, and visceral metastases: implications for diagnosis and immunotherapy. A study conducted by the EORTC Melanoma Cooperative Group. J Pathol 193:13–20

    Article  PubMed  Google Scholar 

  9. Jungbluth AA et al (2000) Monoclonal antibody MA454 reveals a heterogeneous expression pattern of MAGE-1 antigen in formalin-fixed paraffin embedded lung tumours. Br J Cancer 83:493–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jungbluth AA et al (2001) Immunohistochemical analysis of NY-ESO-1 antigen expression in normal and malignant human tissues. Int J Cancer 92:856–860

    Article  CAS  PubMed  Google Scholar 

  11. Waleh N et al (1995) Mapping of the vascular endothelial growth factor-producing hypoxic cells in multicellular tumor spheroids using a hypoxia-specific marker. Cancer Res 55:6222–6226

    CAS  PubMed  Google Scholar 

  12. Lin SC et al (2011) Suppression of dual-specificity phosphatase-2 by hypoxia increases chemoresistance and malignancy in human cancer cells. J Clin Invest 121:1905–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bao Q, Hughes RC (1999) Galectin-3 and polarized growth within collagen gels of wild-type and ricin-resistant MDCK renal epithelial cells. Glycobiology 9:489–495

    Article  CAS  PubMed  Google Scholar 

  14. Cukierman E, Pankov R, Stevens DR et al (2001) Taking cell-matrix adhesions to the third dimension. Science 294:1708–1712

    Article  CAS  PubMed  Google Scholar 

  15. Zegers MM, O'Brien LE, Yu W et al (2003) Epithelial polarity and tubulogenesis in vitro. Trends Cell Biol 13:169–176

    Article  CAS  PubMed  Google Scholar 

  16. Clark EA, King WG, Brugge JS et al (1998) Integrin-mediated signals regulated by members of the rho family of GTPases. J Cell Biol 142:573–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zahir N, Weaver VM (2004) Death in the third dimension: apoptosis regulation and tissue architecture. Curr Opin Genet Dev 14:71–80

    Article  CAS  PubMed  Google Scholar 

  18. Desoize B, Jardillier J (2000) Multicellular resistance: a paradigm for clinical resistance? Crit Rev Oncol Hematol 36:193–207

    Article  CAS  PubMed  Google Scholar 

  19. Pampaloni F, Reynaud EG, Stelzer EH (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8:839–845

    Article  CAS  PubMed  Google Scholar 

  20. Ivascu A, Kubbies M (2006) Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis. J Biomol Screen 11:922–932

    Article  CAS  PubMed  Google Scholar 

  21. Lee GY, Kenny PA, Lee EH et al (2007) Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 4:359–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fischbach C et al (2007) Engineering tumors with 3D scaffolds. Nat Methods 4:855–860

    Article  CAS  PubMed  Google Scholar 

  23. Wei W, Miller B, Gutierrez R (1997) Inhibition of tumor growth by peptide specific cytotoxic T lymphocytes in a three-dimensional collagen matrix. J Immunol Methods 200:47–54

    Article  CAS  PubMed  Google Scholar 

  24. Hambach L, Vermeij M, Buser A et al (2008) Targeting a single mismatched minor histocompatibility antigen with tumor-restricted expression eradicates human solid tumors. Blood 112:1844–1852

    Article  CAS  PubMed  Google Scholar 

  25. Hambach L, Goulmy E (2005) Immunotherapy of cancer through targeting of minor histocompatibility antigens. Curr Opin Immunol 17:202–210

    Article  CAS  PubMed  Google Scholar 

  26. Russo J, Soule HD, McGrath C et al (1976) Reexpression of the original tumor pattern by a human breast carcinoma cell line (MCF-7) in sponge culture. J Natl Cancer Inst 56:279–282

    CAS  PubMed  Google Scholar 

  27. Fata JE, Werb Z, Bissell MJ (2004) Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Res 6:1–11

    CAS  PubMed  Google Scholar 

  28. Skinnider BF, Amin MB (2005) An immunohistochemical approach to the differential diagnosis of renal tumors. Semin Diagn Pathol 22:51–68

    Article  PubMed  Google Scholar 

  29. Gomorri G (1937) Silver impregnation of reticulin in paraffin sections. Am J Pathol 13:993–1002

    Google Scholar 

  30. Cailleau R, Young R, Olive M et al (1974) Breast tumor cell lines from pleural effusions. J Natl Cancer Inst 53:661–674

    CAS  PubMed  Google Scholar 

  31. Maemura M et al (1997) Spindle cell carcinoma of the breast Jpn. J Clin Oncol 27:46–50

    CAS  Google Scholar 

  32. Carter MR, Hornick JL, Lester S et al (2006) Spindle cell (sarcomatoid) carcinoma of the breast: a clinicopathologic and immunohistochemical analysis of 29 cases. Am J Surg Pathol 30:300–309

    Article  PubMed  Google Scholar 

  33. Wargotz ES, Deos PH, Norris HJ (1989) Metaplastic carcinomas of the breast. II. Spindle cell carcinoma. Hum Pathol 20:732–740

    Article  CAS  PubMed  Google Scholar 

  34. Versteeg R, Noordermeer IA, Kruse-Wolters M et al (1988) c-myc down-regulates class I HLA expression in human melanomas. EMBO J 7:1023–1029

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Soule HD, Vazguez J, Long A et al (1973) A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst 51:1409–1416

    CAS  PubMed  Google Scholar 

  36. Steinman S, Wang J, Bourne P et al (2007) Expression of cytokeratin markers, ER-alpha, PR, HER-2/neu, and EGFR in pure ductal carcinoma in situ (DCIS) and DCIS with co-existing invasive ductal carcinoma (IDC) of the breast. Ann Clin Lab Sci 37:127–134

    CAS  PubMed  Google Scholar 

  37. Spierings E et al (2006) A uniform genomic minor histocompatibility antigen typing methodology and database designed to facilitate clinical applications. PLoS One 1:e42

    Article  PubMed  PubMed Central  Google Scholar 

  38. Klein C et al (2002) The hematopoietic system-specific minor histocompatibility antigen HA-1 shows aberrant expression in epithelial cancer cells. J Exp Med 196:359–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hambach L et al (2009) Hypomethylating drugs convert HA-1-negative solid tumors into targets for stem cell-based immunotherapy. Blood 113:2715–2722

    Article  CAS  PubMed  Google Scholar 

  40. Mutis T, Verdijk R, Schrama E et al (1999) Feasibility of immunotherapy of relapsed leukemia with ex vivo-generated cytotoxic T lymphocytes specific for hematopoietic system-restricted minor histocompatibility antigens. Blood 93:2336–2341

    CAS  PubMed  Google Scholar 

  41. de Bueger M, Bakker A, van Rood J et al (1992) Tissue distribution of human minor histocompatibility antigens. Ubiquitous versus restricted tissue distribution indicated heterogeneity among human cytotoxic T lymphocyte-defined non-MHC antigens. J Immunol 149(5):1788–1794

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Hambach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hambach, L., Buser, A., Vermeij, M., Pouw, N., van der Kwast, T., Goulmy, E. (2016). Human Microtumors Generated in 3D: Novel Tools for Integrated In Situ Studies of Cancer Immunotherapies. In: Bondanza, A., Casucci, M. (eds) Tumor Immunology. Methods in Molecular Biology, vol 1393. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3338-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3338-9_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3336-5

  • Online ISBN: 978-1-4939-3338-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics