Skip to main content

Drug Development Process and Regulatory Science

  • Protocol
  • First Online:
Antibiotic Pharmacodynamics

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 1604 Accesses

Abstract

The pursuit of antimicrobial drug development has been met with reluctance by many large pharmaceutical companies. In part, this has been due to the enormous resources required to meet regulatory standards, the risk of failure, and the current perception of regulatory uncertainty. This comes at a time when rates of antimicrobial resistance are on the rise across the globe, and there is a critical need for antimicrobial therapy. In this review, emphasis has been placed on the regulatory incentives to enhance antimicrobial drug development, and the value of pharmacokinetics-pharmacodynamics (PK-PD) principles from early development of an antimicrobial agent through late stage and post-approval/life cycle management strategies in accordance with recent guidelines. This demonstrates the potential to not only streamline the development process, driving down costs and time, but also improve the likelihood of regulatory success, making antibiotic drug development more viable and these needed agents available to the therapeutic armamentarium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Food and Drug Administration (1999) Guidance for industry: population pharmacokinetics. www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm072137.pdf

  2. EMA (2008) Guideline on report the results of population pharmacokinetic analyses. Doc. Ref. CHMP/EWP/185990/06. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003067.pdf

  3. International Conference Harmonization (1994) E4: Dose-response information to support drug registration. www.ich.org/LOB/media/MEDIA480.pdf

  4. Food and Drug Administration (1998) Guidance for industry: providing clinical evidence of effectiveness for human drug and biological products. www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM078749.pdf

  5. Food and Drug Administration (2003) Guidance for industry: exposure-response relationships – study design, data analysis, and regulatory applications. U.S. Department of Health and Human Services, Food and Drug Administration. www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm072109.pdf

  6. Food and Drug Administration (2004) FDA critical path initiatives white paper: innovation or stagnation? Challenge and opportunity on the critical path to new medical products. http://www.fda.gov/downloads/ScienceResearch/SpecialTopics/CriticalPathInitiative/CriticalPathOpportunitiesReports/UCM113411.pdf

  7. U.S. Department of Health and Human Services (2013) Centers for disease control and prevention. Antibiotic resistance threats in the United States. http://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf

  8. Food and Drug Administration (2014) Food and drug administration safety and innovation act (FDASIA). http://www.fda.gov/RegulatoryInformation/Legislation/FederalFoodDrugandCosmeticActFDCAct/SignificantAmendmentstotheFDCAct/FDASIA/

  9. Roberts R, McCune SK (2008) Animal studies in the development of medical countermeasures. Clin Pharmacol Ther 83:918–920

    Article  CAS  PubMed  Google Scholar 

  10. Bergman KL (2009) The animal rule and emerging infections: the role of clinical pharmacology in determining an effective dose. Clin Pharmacol Ther 86:328–331

    Article  CAS  PubMed  Google Scholar 

  11. Talbot GH, Powers JH, Fleming TR, Siuciak JA, Bradley J, Boucher H, on behalf of the CABP-ABSSSI Project Team (2012) Progress on developing endpoints for registrational clinical trials of community-acquired bacterial pneumonia and acute bacterial skin and skin structure infections: update from the biomarkers consortium of the foundation for the National Institutes of Health. Clin Infect Dis 55:1114–1121

    Article  PubMed  PubMed Central  Google Scholar 

  12. European Medicines Agency (2011) Committee for Medicinal Products for Human Use. Guideline on the evaluation of medicinal products indicated for treatment of bacterial infections. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003417.pdf

  13. Ambrose PG, Bhavnani SM, Dudley MN, Ellis-Grosse EJ, Drusano GL (2012) New EMA guideline for antimicrobial development. Lancet Infect Dis 12:266–267

    Article  Google Scholar 

  14. Rex JH, Eisenstine BI, Alder J, Goldberger M, Meyer R, Dane A, Friedland I, Knirsch C, Sanhai WR, Tomayko J, Lancaster C, Jackson J (2013) A comprehensive regulatory framework to address the unmet need for new antibacterial treatments. Lancet Infect Dis 13:269–275

    Article  PubMed  Google Scholar 

  15. Tomayko JF, Rex JH, Tenero DM, Goldberger M, Eisenstine BI (2014) New regulatory tools to support product development. Clin Pharmacol Ther 96:166–168

    Article  CAS  PubMed  Google Scholar 

  16. Rex JH, Goldberger M, Eisenstine BI, Harney C (2014) The evolution of the regulatory framework for antibacterial agents. Ann N Y Acad Sci 1323:11–21

    Article  PubMed  PubMed Central  Google Scholar 

  17. Food and Drug Administration (2013) Draft guidance for industry antibacterial therapies for patients with unmet medical need for the treatment of serious bacterial diseases. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm359184.pdf

  18. Infectious Disease Society of America (2012) White Paper: Recommendations on the conduct of superiority and organism-specific clinical trials of antibacterial agents for the treatment of infections caused by drug-resistant bacterial pathogens. Clin Infect Dis 55:1031–1046

    Article  Google Scholar 

  19. Nambiar S, Laessig K, Toerner J, Farley J, Cox E (2014) Antibacterial drug development: challenges, recent developments, and future considerations. Clin Pharmacol Ther 96:147–149

    Article  CAS  PubMed  Google Scholar 

  20. Craig WA (1998) Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing in mice and men. Clin Infect Dis 26:1–12

    Article  CAS  PubMed  Google Scholar 

  21. Andes D, Craig WA (2002) Animal model pharmacokinetics and pharmacodynamics: a critical review. Int J Antimicrob Agents 19:261–268

    Article  CAS  PubMed  Google Scholar 

  22. Mouton JW, Dudley MN, Cars O, Derendorf H, Drusano GL (2005) Standardization of pharmacokinetic/pharmacodynamic (PK/PD) terminology for anti-infective drugs: an update. J Antimicrob Chemother 55:601–607

    Article  CAS  PubMed  Google Scholar 

  23. Ambrose PG, Bhavnani SM, Rubino CM, Louie A, Gumbo T, Forrest A, Drusano GL (2007) Pharmacokinetics-pharmacodynamics of antimicrobial therapy: it’s not just for mice anymore. Clin Infect Dis 44:79–86

    Article  CAS  PubMed  Google Scholar 

  24. Bulik CC, Bhavnani SM, Hammel JP, Forrest A, Dudley MN, Ellis-Grosse EJ, Drusano GL, Ambrose PG (2013) Evaluation of the probability of regulatory approval based on pre-clinical PK-PD target attainment for community-acquired and hospital-acquired pneumonia A-295. 53rd InterScience conference on antimicrobial agents and chemotherapy, Denver CO, 10–13 September

    Google Scholar 

  25. Van Ogtrop ML, Andes D, Stamstad TJ, Conklin B, Weiss WJ, Craig WA, Vesga O (2000) In vivo pharmacodynamic activities of two glycylcyclines against Gram-positive and Gram-negative bacteria. Antimicrob Agents Chemother 44:943–949

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vanscoy B, Mendes RE, Castanheira M, McCauley J, Bhavnani SM, Forrest A, Jones RN, Okusanya OO, Friedrich LV, Steenbergen J, Ambrose PG (2013) Relationship between ceftolozane-tazobactam exposure and drug resistance amplification in a hollow-fiber infection model. Antimicrob Agents Chemother 57:4134–4138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ambrose PG, Drusano GL, Craig WA (2012) In vivo activity of oritavancin in animal infection models and rationale for a new dosing regimen in humans. Clin Infect Dis 54(Suppl 3):S220–S228

    Article  CAS  PubMed  Google Scholar 

  28. Lamb LM, Crandon JL, Nicolau DP (2013) Pharmacokinetic and pharmacodynamic evaluation of P-873 versus Klebsiella pneumoniae in a neutropenic murine thigh infection model. Antimicrob Agents Chemother 57:1971–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Meagher AK, Ambrose PG, Grasela TH, Ellis-Grosse EJ (2005) Pharmacokinetic/pharmacodynamic profile for tigecycline: a new glycylcycline antimicrobial agent. Diagn Microbiol Infect Dis 52:165–171

    Article  CAS  PubMed  Google Scholar 

  30. Bulitta JB, Okusanya OO, Forrest A, Bhavnani SM, Clark K, Still JG, Fernandes P, Ambrose PG (2013) Population pharmacokinetics of fusidic acid: rationale for front-loaded dosing regimens due to autoinhibition of clearance. Antimicrob Agents Chemother 57:498–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Van Wart SA, Forrest A, Khariton T, Rubino CM, Bhavnani SM, Reynolds DK, Riccobene T, Ambrose PG (2013) Population pharmacokinetics of ceftaroline in patients with acute bacterial skin and skin structure infections or community-acquired bacterial pneumonia. J Clin Pharmacol 53:1155–1167

    PubMed  Google Scholar 

  32. Bhalodi AA, Crandon JL, Biek D, Nicolau DP (2012) Efficacy of ceftaroline fosamil in a staphylococcal murine pneumonia model. Antimicrob Agents Chemother 56:6160–6165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meagher AK, Passarell JA, Cirincione BB, Van Wart SA, Ellis-Grosse EJ, Ambrose PG (2007) Exposure-response analyses of tigecycline efficacy in patients with complicated skin and skin-structure infections. Antimicrob Agents Chemother 51:1939–1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Louie A, Heine HS, Kim K, Brown DL, VanScoy B, Liu W, Kinzig-Schippers M, Sörgel F, Drusano GL (2008) Use of an in vitro pharmacodynamic model to derive a linezolid regimen that optimizes bacterial kill and prevents emergence of resistance in Bacillus anthracis. Antimicrob Agents Chemother 52:2486–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Van Wart SA, Ambrose PG, Rubino CM, Khariton T, Riccobene TA, Friedland HD, Critchley IA, Bhavnani SM (2014) Pharmacokinetic-pharmacodynamic target attainment analyses to evaluate in vitro susceptibility test interpretive criteria for ceftaroline against Staphylococcus aureus and Streptococcus pneumoniae. Antimicrob Agents Chemother 58:885–891

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ambrose PG, Hammel JP, Bhavnani SM, Rubino CM, Ellis-Grosse EJ, Drusano GL (2012) Frequentist and Bayesian pharmacometric-based approaches to facilitate critically needed new antibiotic development: overcoming lies, damn lies, and statistics. Antimicrob Agents Chemother 56:1466–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ambrose PG, Bhavnani SM, Ellis-Grosse EJ, Drusano GL (2010) Pharmacokinetic-pharmacodynamic considerations in the design of hospital-acquired or ventilator-associated bacterial pneumonia studies: look before you leap! Clin Infect Dis 51(Suppl 1):S103–S110

    Article  PubMed  Google Scholar 

  38. Wiskirchen DE, Nordmann P, Crandon JL, Nicolau DP (2013) Efficacy of humanized carbapenem and ceftazidime regimens against Enterobacteriaceae producing the OXA-48 carbapenemase in a murine infection model. Antimicrob Agents Chemother 2014:1678–1683

    Google Scholar 

  39. Jang SH, Colangelo PM, Gobburu JV (2010) Exposure-response of posaconazole used for prophylaxis against invasive fungal infections: evaluating the need to adjust doses based on drug concentrations in plasma. Clin Pharmacol Ther 88:115–119

    Article  CAS  PubMed  Google Scholar 

  40. Tornøe CW, Tworzyanski JJ, Imoisili MA, Alexander JJ, Korth-Bradley JM, Gobburu JV (2007) Optimising piperacillin/tazobactam dosing in paediatrics. Int J Antimicrob Agents 30:320–324

    Article  PubMed  Google Scholar 

  41. Drusano GL, Preston SL, Hardalo C, Hare R, Banfield C, Andes D, Vesga O, Craig WA (2001) Use of preclinical data for selection of a phase II/III dose for evernimicin and identification of a preclinical MIC breakpoint. Antimicrob Agents Chemother 45:13–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bhavnani SM, Hammel JP, Cirincione BB, Wikler MA, Ambrose PG (2005) Use of pharmacokinetic-pharmacodynamic target attainment analyses to support phase 2 and 3 dosing strategies for doripenem. Antimicrob Agents Chemother 49:3944–3947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelyn J. Ellis-Grosse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ellis-Grosse, E.J., Gobburu, J. (2016). Drug Development Process and Regulatory Science. In: Rotschafer, J., Andes, D., Rodvold, K. (eds) Antibiotic Pharmacodynamics. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3323-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3323-5_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3321-1

  • Online ISBN: 978-1-4939-3323-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics