Skip to main content

General Concepts of Pharmacodynamics for Anti-infective Agents

  • Protocol
  • First Online:
Antibiotic Pharmacodynamics

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Pharmacokinetics (PK) and pharmacodynamics (PD) have become an important field in the evaluation and application of antimicrobials in all its aspects. PK/PD is used in developing drugs, optimizing therapy, setting clinical breakpoints, and preventing emergence of resistance. This chapter provides a general overview of PK/PD, the major factors that play a role, in vitro–in vivo relationships, pitfalls, and the application to clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ISO (2006) ISO 20776-1. Clinical Laboratory Testing and in vitro diagnostic test systems - susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility testing devices- Part 1. International Standards Organisation

    Google Scholar 

  2. Ericsson HM, Sherris JC (1971) Antibiotic sensitivity testing. Report of an international collaborative study. Acta Pathol Microbiol Scand B: Microbiol Immunol 217(Suppl B):1–90

    Google Scholar 

  3. NCCLS (2001) Development of in vitro susceptibility testing criteria and quality control parameters; approved guideline-Second Edition. NCCLS document M23-A2. NCCLS, Wayne

    Google Scholar 

  4. EUCAST (2003) Determination of minimum Inhibitory concentrations (MICs) of antibacterial agents by broth dilution. DISCUSSION DOCUMENT E.Dis 5.1. European Society Clinical Microbiology and Infectious Diseases, Munich, Germany

    Google Scholar 

  5. ISO (2008) ISO 20776-2. Clinical Laboratory Testing and in vitro diagnostic test systems - susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility testing devices- Part 2. International Standards Organisation

    Google Scholar 

  6. ISO (2014) ISO 16782. Criteria for acceptable lots of dehydrated Mueller-Hinton Agar and Broth for Antimicrobial Susceptibility Testing. International Standards Organisation

    Google Scholar 

  7. Mouton JW, Vinks AA (2005) Relationship between minimum inhibitory concentration and stationary concentration revisited: growth rates and minimum bactericidal concentrations. Clin Pharmacokinet 44(7):767–768

    Article  PubMed  Google Scholar 

  8. Garrod LP (1948) The bactericidal action of streptomycin. Br Med J 1(4547):382–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shah PM, Junghanns SW (1976) Bactericidal dosie-activity relationships with E. coli, K. pneumoniae and Staph. aureus (author’s transl). Dtsch Med Wochenschr 101(9):325–328

    Article  CAS  PubMed  Google Scholar 

  10. Mattie H (1981) Kinetics of antimicrobial action. Rev Infect Dis 3(1):19–27

    Article  CAS  PubMed  Google Scholar 

  11. Vogelman B, Craig WA (1986) Kinetics of antimicrobial activity. J Pediatr 108(5 Pt 2):835–840

    Article  CAS  PubMed  Google Scholar 

  12. Bouvier d’Yvoire MJY, Maire PH (1996) Dosageregimens of antibacterials. Implications of a pharmacokinetic/pharmacodynamic model. Clin Drug Invest 11:229–239

    Article  Google Scholar 

  13. Mouton JW, Vinks AA (2005) Pharmacokinetic/pharmacodynamic modelling of antibacterials in vitro and in vivo using bacterial growth and kill kinetics: the minimum inhibitory concentration versus stationary concentration. Clin Pharmacokinet 44(2):201–210

    Article  CAS  PubMed  Google Scholar 

  14. Eagle H, Fleischman R, Levy M (1953) “Continuous” vs. “discontinuous” therapy with penicillin; the effect of the interval between injections on therapeutic efficacy. N Engl J Med 248(12):481–488

    Article  CAS  PubMed  Google Scholar 

  15. Mouton JW, Dudley MN, Cars O, Derendorf H, Drusano GL (2005) Standardization of pharmacokinetic/pharmacodynamic (PK/PD) terminology for anti-infective drugs: an update. J Antimicrob Chemother 55(5):601–607

    Article  CAS  PubMed  Google Scholar 

  16. Mouton JW, Dudley MN, Cars O, Derendorf H, Drusano GL (2002) Standardization of pharmacokinetic/pharmacodynamic (PK/PD) terminology for anti-infective drugs. Int J Antimicrob Agents 19(4):355–358

    Article  CAS  PubMed  Google Scholar 

  17. Toutain PL, Bousquet-Melou A, Martinez M (2007) AUC/MIC: a PK/PD index for antibiotics with a time dimension or simply a dimensionless scoring factor? J Antimicrob Chemother 60(6):1185–1188. doi:10.1093/jac/dkm360

    Article  CAS  PubMed  Google Scholar 

  18. Bakker-Woudenberg IA, van Gerwen AL, Michel MF (1979) Efficacy of antimicrobial therapy in experimental rat pneumonia: antibiotic treatment schedules in rats with impaired phagocytosis. Infect Immun 25(1):376–387

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gerber AU, Craig WA, Brugger HP, Feller C, Vastola AP, Brandel J (1983) Impact of dosing intervals on activity of gentamicin and ticarcillin against Pseudomonas aeruginosa in granulocytopenic mice. J Infect Dis 147(5):910–917

    Article  CAS  PubMed  Google Scholar 

  20. Vogelman B, Gudmundsson S, Leggett J, Turnidge J, Ebert S, Craig WA (1988) Correlation of antimicrobial pharmacokinetic parameters with therapeutic efficacy in an animal model. J Infect Dis 158(4):831–847

    Article  CAS  PubMed  Google Scholar 

  21. Leggett JE, Fantin B, Ebert S, Totsuka K, Vogelman B, Calame W, Mattie H, Craig WA (1989) Comparative antibiotic dose-effect relations at several dosing intervals in murine pneumonitis and thigh-infection models. J Infect Dis 159(2):281–292

    Article  CAS  PubMed  Google Scholar 

  22. Leggett JE, Ebert S, Fantin B, Craig WA (1990) Comparative dose-effect relations at several dosing intervals for beta- lactam, aminoglycoside and quinolone antibiotics against gram-negative bacilli in murine thigh-infection and pneumonitis models. Scand J Infect Dis Suppl 74:179–184

    CAS  PubMed  Google Scholar 

  23. Scaglione F, Mouton JW, Mattina R, Fraschini F (2003) Pharmacodynamics of levofloxacin and ciprofloxacin in a murine pneumonia model: peak concentration/MIC versus area under the curve/MIC ratios. Antimicrob Agents Chemother 47(9):2749–2755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ambrose PG, Bhavnani SM, Rubino CM, Louie A, Gumbo T, Forrest A, Drusano GL (2007) Pharmacokinetics-pharmacodynamics of antimicrobial therapy: it’s not just for mice anymore. Clin Infect Dis 44(1):79–86

    Article  CAS  PubMed  Google Scholar 

  25. Tompsett R, Shultz S, McDermott W (1947) The relation of protein binding to the pharmacology and antibacterial activity of penicillins X, G, dhydro F, and K. J Bacteriol 53:581–595

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Craig WA (1995) Interrelationship between pharmacokinetics and pharmacodynamics in determining dosage regimens for broad-spectrum cephalosporins. Diagn Microbiol Infect Dis 22(1-2):89–96

    Article  CAS  PubMed  Google Scholar 

  27. Zeitlinger MA, Derendorf H, Mouton JW, Cars O, Craig WA, Andes D, Theuretzbacher U (2011) Protein binding: do we ever learn? Antimicrob Agents Chemother 55(7):3067–3074. doi:10.1128/AAC.01433-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Garrison MW, Vance-Bryan K, Larson TA, Toscano JP, Rotschafer JC (1990) Assessment of effects of protein binding on daptomycin and vancomycin killing of Staphylococcus aureus by using an in vitro pharmacodynamic model. Antimicrob Agents Chemother 34(10):1925–1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Calain P, Krause KH, Vaudaux P, Auckenthaler R, Lew D, Waldvogel F, Hirschel B (1987) Early termination of a prospective, randomized trial comparing teicoplanin and flucloxacillin for treating severe staphylococcal infections. J Infect Dis 155(2):187–191

    Article  CAS  PubMed  Google Scholar 

  30. Lowdin E, Odenholt-Tornqvist I, Bengtsson S, Cars O (1993) A new method to determine postantibiotic effect and effects of subinhibitory antibiotic concentrations. Antimicrob Agents Chemother 37(10):2200–2205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tam VH, Nikolaou M (2011) A novel approach to pharmacodynamic assessment of antimicrobial agents: new insights to dosing regimen design. PLoS Comput Biol 7(1):e1001043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Forrest A, Nix DE, Ballow CH, Goss TF, Birmingham MC, Schentag JJ (1993) Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 37(5):1073–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Preston SL, Drusano GL, Berman AL, Fowler CL, Chow AT, Dornseif B, Reichl V, Natarajan J, Corrado M (1998) Pharmacodynamics of levofloxacin: a new paradigm for early clinical trials [see comments]. JAMA 279(2):125–129

    Article  CAS  PubMed  Google Scholar 

  34. Ambrose PG, Grasela DM, Grasela TH, Passarell J, Mayer HB, Pierce PF (2001) Pharmacodynamics of fluoroquinolones against Streptococcus pneumoniae in patients with community-acquired respiratory tract infections. Antimicrob Agents Chemother 45(10):2793–2797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rodriguez-Tudela JL, Almirante B, Rodriguez-Pardo D, Laguna F, Donnelly JP, Mouton JW, Pahissa A, Estrella MC (2007) Correlation of the MIC and Dose/MIC ratio of fluconazole to the therapeutic response of patients with mucosal candidiasis and candidaemia. Antimicrob Agents Chemother 51(10):3599–3604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Muller AE, Punt N, Mouton JW (2013) Optimal exposures of ceftazidime predict the probability of microbiological and clinical outcome in the treatment of nosocomial pneumonia. J Antimicrob Chemother 68(4):900–906. doi:10.1093/jac/dks468, dks468 [pii]

    Article  CAS  PubMed  Google Scholar 

  37. Drusano GL, Fregeau C, Liu W, Brown DL, Louie A (2010) Impact of burden on granulocyte clearance of bacteria in a mouse thigh infection model. Antimicrob Agents Chemother 54(10):4368–4372. doi:10.1128/AAC.00133-10, AAC.00133-10 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Andes D, Craig WA (2002) Animal model pharmacokinetics and pharmacodynamics: a critical review. Int J Antimicrob Agents 19(4):261–268

    Article  CAS  PubMed  Google Scholar 

  39. Drusano GL, D’Argenio DZ, Preston SL, Barone C, Symonds W, LaFon S, Rogers M, Prince W, Bye A, Bilello JA (2000) Use of drug effect interaction modeling with Monte Carlo simulation to examine the impact of dosing interval on the projected antiviral activity of the combination of abacavir and amprenavir. Antimicrob Agents Chemother 44(6):1655–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Drusano GL, Preston SL, Hardalo C, Hare R, Banfield C, Andes D, Vesga O, Craig WA (2001) Use of preclinical data for selection of a phase II/III dose for evernimicin and identification of a preclinical MIC breakpoint. Antimicrob Agents Chemother 45(1):13–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Roberts JA, Abdul-Aziz MH, Lipman J, Mouton JW, Vinks AA, Felton TW, Hope WW, Farkas A, Neely MN, Schentag JJ, Drusano G, Frey OR, Theuretzbacher U, Kuti JL, on behalf of The International Society of Anti-Infective P, the P, Pharmacodynamics Study Group of the European Society of Clinical M, Infectious D (2014) Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis 14(6):498–509. doi:10.1016/S1473-3099(14)70036-2

    Google Scholar 

  42. Mouton JW, Brown DF, Apfalter P, Canton R, Giske CG, Ivanova M, Macgowan AP, Rodloff A, Soussy CJ, Steinbakk M, Kahlmeter G (2012) The role of pharmacokinetics/pharmacodynamics in setting clinical MIC breakpoints: the EUCAST approach. Clin Microbiol Infect 18(3):E37–E45. doi:10.1111/j.1469-0691.2011.03752.x

    Article  CAS  PubMed  Google Scholar 

  43. Kahlmeter G, Brown DF, Goldstein FW, MacGowan AP, Mouton JW, Osterlund A, Rodloff A, Steinbakk M, Urbaskova P, Vatopoulos A (2003) European harmonization of MIC breakpoints for antimicrobial susceptibility testing of bacteria. J Antimicrob Chemother 52(2):145–148

    Article  CAS  PubMed  Google Scholar 

  44. Kahlmeter G, Brown DF, Goldstein FW, MacGowan AP, Mouton JW, Odenholt I, Rodloff A, Soussy CJ, Steinbakk M, Soriano F, Stetsiouk O (2006) European Committee on Antimicrobial Susceptibility Testing (EUCAST) Technical Notes on antimicrobial susceptibility testing. Clin Microbiol Infect 12(6):501–503

    Article  CAS  PubMed  Google Scholar 

  45. Andes D (2006) Pharmacokinetics and pharmacodynamics of antifungals. Infect Dis Clin North Am 20(3):679–697

    Article  PubMed  Google Scholar 

  46. Seyedmousavi S, Mouton JW, Melchers WJ, Bruggemann RJ, Verweij PE (2014) The role of azoles in the management of azole-resistant aspergillosis: from the bench to the bedside. Drug Resist Updat 17(3):37–50. doi:10.1016/j.drup.2014.06.001

    Article  PubMed  Google Scholar 

  47. Drusano GL (1993) Pharmacodynamics of antiretroviral chemotherapy. Infect Control Hosp Epidemiol 14(9):530–536

    Article  CAS  PubMed  Google Scholar 

  48. McSharry JJ, Drusano GL (2011) Antiviral pharmacodynamics in hollow fibre bioreactors. Antivir Chem Chemother 21(5):183–192. doi:10.3851/IMP1770

    Article  CAS  PubMed  Google Scholar 

  49. Firsov AA, Vostrov SN, Lubenko IY, Drlica K, Portnoy YA, Zinner SH (2003) In vitro pharmacodynamic evaluation of the mutant selection window hypothesis using four fluoroquinolones against Staphylococcus aureus. Antimicrob Agents Chemother 47(5):1604–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tam VH, Louie A, Deziel MR, Liu W, Leary R, Drusano GL (2005) Bacterial-population responses to drug-selective pressure: examination of garenoxacin’s effect on Pseudomonas aeruginosa. J Infect Dis 192(3):420–428

    Article  PubMed  Google Scholar 

  51. Tam VH, Louie A, Fritsche TR, Deziel M, Liu W, Brown DL, Deshpande L, Leary R, Jones RN, Drusano GL (2007) Impact of drug-exposure intensity and duration of therapy on the emergence of Staphylococcus aureus resistance to a quinolone antimicrobial. J Infect Dis 195(12):1818–1827. doi:10.1086/518003, JID37660 [pii]

    Article  CAS  PubMed  Google Scholar 

  52. Blondeau JM, Zhao X, Hansen G, Drlica K (2001) Mutant prevention concentrations of fluoroquinolones for clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother 45(2):433–438. doi:10.1128/AAC.45.2.433-438.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhao X, Drlica K (2002) Restricting the selection of antibiotic-resistant mutant bacteria: measurement and potential use of the mutant selection window. J Infect Dis 185(4):561–565

    Article  PubMed  Google Scholar 

  54. Goessens WH, Mouton JW, Ten Kate MT, Bijl AJ, Ott A, Bakker-Woudenberg IA (2007) Role of ceftazidime dose regimen on the selection of resistant Enterobacter cloacae in the intestinal flora of rats treated for an experimental pulmonary infection. J Antimicrob Chemother 59(3):507–516

    Article  CAS  PubMed  Google Scholar 

  55. Drusano GL, Bilello JA, Stein DS, Nessly M, Meibohm A, Emini EA, Deutsch P, Condra J, Chodakewitz J, Holder DJ (1998) Factors influencing the emergence of resistance to indinavir: role of virologic, immunologic, and pharmacologic variables. J Infect Dis 178(2):360–367

    Article  CAS  PubMed  Google Scholar 

  56. Meletiadis J, Verweij PE, TeDorsthorst DT, Meis JF, Mouton JW (2005) Assessing in vitro combinations of antifungal drugs against yeasts and filamentous fungi: comparison of different drug interaction models. Med Mycol 43(2):133–152

    Article  CAS  PubMed  Google Scholar 

  57. Yuan Z, Ledesma KR, Singh R, Hou J, Prince RA, Tam VH (2010) Quantitative assessment of combination antimicrobial therapy against multidrug-resistant bacteria in a murine pneumonia model. J Infect Dis 201(6):889–897. doi:10.1086/651024

    Article  CAS  PubMed  Google Scholar 

  58. Mouton JW, van Ogtrop ML, Andes D, Craig WA (1999) Use of pharmacodynamic indices to predict efficacy of combination therapy in vivo. Antimicrob Agents Chemother 43(10):2473–2478

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan W. Mouton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mouton, J.W. (2016). General Concepts of Pharmacodynamics for Anti-infective Agents. In: Rotschafer, J., Andes, D., Rodvold, K. (eds) Antibiotic Pharmacodynamics. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3323-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3323-5_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3321-1

  • Online ISBN: 978-1-4939-3323-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics