Skip to main content

Pyrosequencing Chemistry Coupled with Modified Primer Extension Reactions for Quantitative Detection of Allele Frequency in a Pooled Sample

  • Protocol
  • First Online:
Advances and Clinical Practice in Pyrosequencing

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 643 Accesses

Abstract

A new method for SNP analysis based on the detection of pyrophosphate (PPi) is demonstrated, which is capable of detecting small allele frequency differences between two DNA pools for genetic association studies other than SNP typing. The method is based on specific primer extension reactions coupled with PPi detection. As the specificity of the primer-directed extension is not enough for quantitative SNP analysis, artificial mismatched bases are introduced into the 3′-terminal regions of the specific primers as a way of improving the switching characteristics of the primer extension reactions. The best position in the primer for such artificial mismatched bases is the third position from the primer 3′-terminus. Contamination with endogenous PPi, which produces a large background signal level in SNP analysis, was removed using PPase to degrade the PPi during the sample preparation process. It is possible to accurately and quantitatively analyze SNPs using a set of primers that correspond to the wild-type and mutant DNA segments. The termini of these primers are at the mutation positions. Various types of SNPs were successfully analyzed. It was possible to very accurately determine SNPs with frequencies as low as 0.02. It is very reproducible and the allele frequency difference can be determined. It is accurate enough to detect meaningful genetic differences among pooled DNA samples. The method is sensitive enough to detect 14 amol ssM13 DNA. The proposed method seems very promising in terms of realizing a cost-effective, large-scale human genetic testing system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J et al (1998) Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280:1077–1082

    Article  CAS  PubMed  Google Scholar 

  2. See D, Kanazin V, Talbert H, Blake T (2000) Electrophoretic detection of single-nucleotide polymorphisms. Biotechniques 28(710):714, 716

    Google Scholar 

  3. Schmalzing D, Belenky A, Novotny MA, Koutny L, Salas-Solano O, El-Difrawy S, Adourian A, Matsudaira P, Ehrlich D (2000) Microchip electrophoresis: a method for high-speed SNP detection. Nucleic Acids Res 28:e43

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Newton CR, Graham A, Heptinstall LE, Powell SJ, Summers C, Kalsheker N, Smith JC, Markham AF (1998) Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res 17:2503–2516

    Article  Google Scholar 

  5. Lyamichev V, Mast AL, Hall JG, Prudent JR, Kaiser MW, Takova T, Kwiatkowski RW, Sander TJ, de Arruda M, Arco DA, Neri BP, Brow MA (1998) Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes. Nat Biotechnol 17:292–296

    Google Scholar 

  6. Hall JG, Eis PS, Law SM, Reynaldo LP, Prudent JR, Marshall DJ, Allawi HT, Mast AL, Dahlberg JE, Kwiatkowski RW, de Arruda M, Neri BP, Lyamichev VI (2000) Sensitive detection of DNA polymorphisms by the serial invasive signal amplification reaction. Proc Natl Acad Sci U S A 97:8272–8277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Jeffreys AJ, MacLeod A, Tamaki K, Neil DL, Monckton DG (1991) Minisatellite repeat coding as a digital approach to DNA typing. Nature 354:204–209

    Article  CAS  PubMed  Google Scholar 

  8. Whitcombe D, Brownie J, Gillard HL, McKechnie D, Theaker J, Newton CR, Little S (1998) A homogeneous fluorescence assay for PCR amplicons: its application to real-time, single-tube genotyping. Clin Chem 44:918–923

    CAS  PubMed  Google Scholar 

  9. Howell WM, Jobs M, Gyllensten U, Brookes AJ (1999) Dynamic allele-specific hybridization. A new method for scoring single nucleotide polymorphisms. Nat Biotechnol 17:87–88

    Article  CAS  PubMed  Google Scholar 

  10. Tyagi S, Bratu DP, Kramer FR (1998) Multicolor molecular beacons for allele discrimination. Nat Biotechnol 16:49–53

    Article  CAS  PubMed  Google Scholar 

  11. Sauer S, Lechner D, Berlin K, Lehrach H, Escary JL, Fox N, Gut IG (2000) A novel procedure for efficient genotyping of single nucleotide polymorphisms. Nucleic Acids Res 28:e13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Fei Z, Smith LM (2000) Analysis of single nucleotide polymorphisms by primer extension and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 14:950–959

    Article  CAS  PubMed  Google Scholar 

  13. Ronaghi M, Uhlen M, Nyren P (1998) A sequencing method based on real time pyrophosphate. Science 281:363–365

    Article  CAS  PubMed  Google Scholar 

  14. Nyren P, Karamohamed S, Ronaghi M (1997) Detection of single-base changes using a bioluminometric primer extension assay. Anal Biochem 244:367–373

    Article  CAS  PubMed  Google Scholar 

  15. Ahmadian A, Gharizadeh B, Gustafsson AC, Sterky F, Nyren P, Uhlen MA, Lundeberg J (2000) Single- nucleotide polymorphism analysis by pyrosequencing. Anal Biochem 280:103–110

    Article  CAS  PubMed  Google Scholar 

  16. Fan JB, Chen X, Halushka MK, Berno A, Huang X, Ryder T, Lipshutz RJ, Lockhart DJ, Chakravarti A (2000) Parallel genotyping of human SNPs using generic high-density oligonucleotide tag arrays. Genome Res 10:853–860

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Gilles PN, Wu DJ, Foster CB, Dillon PJ, Chanock SJ (1999) Single nucleotide polymorphic discrimination by an electronic dot blot assay on semiconductor microchips. Nat Biotechnol 17:365–370

    Article  CAS  PubMed  Google Scholar 

  18. Sosnowski RG, Tu E, Butler WF, O’Connell JP, Heller MJ (1997) Rapid determination of single base mismatch mutations in DNA hybrids by direct electric field control. Proc Natl Acad Sci U S A 94:1119–1123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Boon EM, Ceres DM, Drummond TG, Hill MG, Barton JK (2000) Mutation detection by electrocatalysis at DNA-modified electrodes. Nat Biotechnol 18:1096–1100

    Article  CAS  PubMed  Google Scholar 

  20. Chen J, Iannone MA, Li MS, Taylor JD, Rivers P, Nelsen AJ, Slentz-Kesler KA, Roses A, Weiner MP (2000) A microsphere-based assay for multiplexed single nucleotide polymorphism analysis using single base chain extension. Genome Res 10:549–557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Lannone MA, Taylor JD, Chen J, Li MS, Rivers P, Slentz-Kesler KA, Weiner MP (2000) Multiplexed single nucleotide polymorphism genotyping by oligonucleotide ligation and flow cytometry. Cytometry 39:131–140

    Article  Google Scholar 

  22. Syvanen AC (1999) From gels to chips: “minisequencing” primer extension for analysis of point mutations and single nucleotide polymorphisms. Hum Mutat 13:1–10

    Article  CAS  PubMed  Google Scholar 

  23. Landegren U, Nilsson M, Kwok PY (1998) Reading bits of genetic information: methods for single-nucleotide polymorphism analysis. Genome Res 8:769–776

    CAS  PubMed  Google Scholar 

  24. Nollau P, Wagener C (1997) Methods for detection of point mutations: performance and quality assessment. IFCC Scientific Division, Committee on Molecular Biology Techniques. Clin Chem 43:1114–1128

    CAS  PubMed  Google Scholar 

  25. Whitcombe D, Newton CR, Little S (1998) Advances in approaches to DNA-based diagnostics. Curr Opin Biotechnol 9:602–608

    Article  CAS  PubMed  Google Scholar 

  26. Breen G, Harold D, Ralston S, Shaw D, St Clair D (2000) Determining SNP allele frequencies in DNA pools. Biotechniques 28:464–466, 468, 470

    CAS  PubMed  Google Scholar 

  27. Campbell DA, Valdes A, Spurr N (2000) Making drug discovery a SN(i)P. Drug Discov 5:388–396

    CAS  Google Scholar 

  28. Okano K, Uematsu C, Matsunaga H, Kambara H (1998) Characteristics of selective polymerase chain reaction (PCR) using two-base anchored primers and improvement of its specificity. Electrophoresis 19:3071–3078

    Article  CAS  PubMed  Google Scholar 

  29. Capaldi S, Getts RC, Jayasena SD (2000) Signal amplification through nucleotide extension and excision on a dendritic DNA platform. Nucleic Acids Res 28:e21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Ronaghi M (2000) Improved performance of pyrosequencing using single-stranded DNA-binding protein. Anal Biochem 286:282–288

    Article  CAS  PubMed  Google Scholar 

  31. Hyman ED (1998) A new method of sequencing DNA. Anal Biochem 174:423–436

    Article  Google Scholar 

  32. Ronaghi M, Karamohamed S, Pettersson B, Uhlen M, Nyren P (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 242:84–89

    Article  CAS  PubMed  Google Scholar 

  33. Germer S, Holland MJ, Higuchi R (2000) High-throughput SNP allele-frequency determination in pooled DNA samples by kinetic PCR. Genome Res 10:258–266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zhou, G., Kamahori, M., Okano, K., Chuan, G., Harada, K., Kambara, H. (2016). Pyrosequencing Chemistry Coupled with Modified Primer Extension Reactions for Quantitative Detection of Allele Frequency in a Pooled Sample. In: Zhou, G., Song, Q. (eds) Advances and Clinical Practice in Pyrosequencing. Springer Protocols Handbooks. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3308-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3308-2_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3306-8

  • Online ISBN: 978-1-4939-3308-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics