Skip to main content

A Novel Pyrosequencing Principle Based on AMP–PPDK Reaction for Improving the Detection Limit

  • Protocol
  • First Online:
Advances and Clinical Practice in Pyrosequencing

Abstract

Highly sensitive real-time pyrosequencing seems promising for constructing an inexpensive and small DNA sequencer with a low running cost. A DNA sample of a picomole level is usually used in the conventional pyrosequencing based on a luciferase assay coupled with an APS–ATP sulfurylase reaction for producing ATP from pyrophosphate (PPi). Although the luminescence intensity could be increased by increasing the amount of luciferase, it was impossible to reduce the target DNA amount because of a large background luminescence due to the luciferase–APS reaction. In this report, a novel approach using a new conversion reaction of PPi to ATP is proposed. This method has a very low background and can produce high signals in the presence of a large amount of luciferase; thus, the sample amount required for sequencing is significantly reduced. The ATP production from PPi is catalyzed with pyruvate orthophosphate dikinase (PPDK) using AMP and phosphoenolpyruvate as the substrates, which are inactive for the luciferase-catalyzed reaction. All of the components in the AMP–PPDK-based pyrosequencing system are suitable for highly sensitive DNA sequencing in one tube. Real-time DNA sequencing with a readable length up to 70 bases was successfully demonstrated by using this system. By increasing the amount of luciferase, as low as 2.5 fmol of DNA templates was accurately sequenced by the proposed method with a novel simple and inexpensive DNA sequencer having a photodiode array as a sensor instead of a PMT or CCD camera. A sample amount as low as two orders of magnitude smaller than that used in the conventional pyrosequencer can be used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zubritsky E (2002) How analytical chemists saved the human genome project…or at least gave it a helping hand. Anal Chem 74:23A–26A

    PubMed  Google Scholar 

  2. Shendure J, Mitra RD, Varma C, Church GM (2004) Advanced sequencing technologies: methods and goals. Nat Rev Genet 5:335–344

    Article  CAS  PubMed  Google Scholar 

  3. Chan EY (2005) Advances in sequencing technology. Mutat Res 573:13–40

    Article  CAS  PubMed  Google Scholar 

  4. Drmanac R, Drmanac S, Strezoska Z, Paunesku T, Labat I, Zeremski M, Snoddy J, Funkhouser WK, Koop B, Hood L et al (1993) DNA sequence determination by hybridization: a strategy for efficient large-scale sequencing. Science 260:1649–1652

    Article  CAS  PubMed  Google Scholar 

  5. Broude NE, Sano T, Smith CL, Cantor CR (1994) Enhanced DNA sequencing by hybridization. Proc Natl Acad Sci U S A 91:3072–3076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Ronaghi M, Uhlen M, Nyren P (1998) A sequencing method based on real-time pyrophosphate. Science 281(363):365

    Google Scholar 

  7. Elahi E, Ronaghi M (2004) Pyrosequencing: a tool for DNA sequencing analysis. Methods Mol Biol 255:211–219

    CAS  PubMed  Google Scholar 

  8. Seo TS, Bai X, Kim DH, Meng Q, Shi S, Ruparel H, Li Z, Turro NJ, Ju J (2005) Four-color DNA sequencing by synthesis on a chip using photocleavable fluorescent nucleotides. Proc Natl Acad Sci U S A 102:5926–5931

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Jett JH, Keller RA, Martin JC, Marrone BL, Moyzis RK, Ratliff RL, Seitzinger NK, Shera EB, Stewart CC (1989) High-speed DNA sequencing: an approach based upon fluorescence detection of single molecules. J Biomol Struct Dyn 7:301–309

    Article  CAS  PubMed  Google Scholar 

  10. Sauer M, Angerer B, Ankenbauer W, Foldes-Papp Z, Gobel F, Han KT, Rigler R, Schulz A, Wolfrum J, Zander C (2001) Single molecule DNA sequencing in submicrometer channels: state of the art and future prospects. J Biotechnol 86:181–201

    Article  CAS  PubMed  Google Scholar 

  11. Werner JH, Cai H, Jett JH, Reha-Krantz L, Keller RA, Goodwin PM (2003) Progress towards single-molecule DNA sequencing: a one color demonstration. J Biotechnol 102:1–14

    Article  CAS  PubMed  Google Scholar 

  12. Brakmann S (2004) High-density labeling of DNA for single molecule sequencing. Methods Mol Biol 283:137–144

    CAS  PubMed  Google Scholar 

  13. Ronaghi M (2001) Pyrosequencing sheds light on DNA sequencing. Genome Res 11:3–11

    Article  CAS  PubMed  Google Scholar 

  14. Ahmadian A, Gharizadeh B, Gustafsson AC, Sterky F, Nyren P, Uhlen M, Lundeberg J (2000) Single-nucleotide polymorphism analysis by pyrosequencing. Anal Biochem 280:103–110

    Article  CAS  PubMed  Google Scholar 

  15. Ronaghi M, Elahi E (2002) Pyrosequencing for microbial typing. J Chromatogr B Analyt Technol Biomed Life Sci 782:67–72

    Article  CAS  PubMed  Google Scholar 

  16. Pourmand N, Elahi E, Davis RW, Ronaghi M (2002) Multiplex pyrosequencing. Nucleic Acids Res 30, e31

    Article  PubMed Central  PubMed  Google Scholar 

  17. Nourizad N, Gharizadeh B, Nyren P (2003) Method for clone checking. Electrophoresis 24:1712–1715

    Article  CAS  PubMed  Google Scholar 

  18. Sakakibara T, Murakami S, Eisaki N, Nakajima M, Imai K (1999) An enzymatic cycling method using pyruvate orthophosphate dikinase and firefly luciferase for the simultaneous determination of ATP and AMP (RNA). Anal Biochem 268:94–101

    Article  CAS  PubMed  Google Scholar 

  19. Zhou G, Gotou M, Kajiyama T, Kambara H (2005) Multiplex SNP typing by bioluminometric assay coupled with terminator incorporation (BATI). Nucleic Acids Res 33:e133

    Article  PubMed Central  PubMed  Google Scholar 

  20. Ronaghi M, Nygren M, Lundeberg J, Nyren P (1999) Analyses of secondary structures in DNA by pyrosequencing. Anal Biochem 267:65–71

    Article  CAS  PubMed  Google Scholar 

  21. Zhou G, Kamahori M, Okano K, Harada K, Kambara H (2001) Miniaturized pyrosequencer for DNA analysis with capillaries to deliver deoxynucleotides. Electrophoresis 22:3497–3504

    Article  CAS  PubMed  Google Scholar 

  22. Kamahori M, Harada K, Kambara H (2002) A phase III randomized trial of 5-fluorouracil, doxorubicin, and mitomycin C versus 5-fluorouracil and mitomycin C versus 5-fluorouracil alone in curatively resected gastric cancer. Meas Sci Technol 13:1779–1785

    Article  CAS  Google Scholar 

  23. Eisaki N, Tatsumi H, Murakami S, Horiuchi T (1999) Pyruvate phosphate dikinase from a thermophilic actinomyces Microbispora rosea subsp. aerata: purification, characterization and molecular cloning of the gene. Biochim Biophys Acta 1431:363–373

    Article  CAS  PubMed  Google Scholar 

  24. Gharizadeh B, Nordstrom T, Ahmadian A, Ronaghi M, Nyren P (2002) Long-read pyrosequencing using pure 2′-deoxyadenosine-5′-O′-(1-thiotriphosphate) Sp-isomer. Anal Biochem 301:82–90

    Article  CAS  PubMed  Google Scholar 

  25. Ronaghi M (2000) Improved performance of pyrosequencing using single-stranded DNA-binding protein. Anal Biochem 286:282–288

    Article  CAS  PubMed  Google Scholar 

  26. Ehn M, Ahmadian A, Nilsson P, Lundeberg J, Hober S (2002) Escherichia coli single-stranded DNA-binding protein, a molecular tool for improved sequence quality in pyrosequencing. Electrophoresis 23:3289–3299

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zhou, G., Kajiyama, T., Gotou, M., Kishimoto, A., Suzuki, S., Kambara, H. (2016). A Novel Pyrosequencing Principle Based on AMP–PPDK Reaction for Improving the Detection Limit. In: Zhou, G., Song, Q. (eds) Advances and Clinical Practice in Pyrosequencing. Springer Protocols Handbooks. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3308-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3308-2_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3306-8

  • Online ISBN: 978-1-4939-3308-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics