Skip to main content

Measurement of PTEN by Flow Cytometry

  • Protocol
  • First Online:
Book cover PTEN

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1388))

Abstract

Recent advancements have driven the development of smaller footprint, less expensive, and user-friendly flow cytometers introducing the technology to more users.

Flow cytometry is an established tool for multiparametric analysis of various important cellular characteristics. Fluorescent dyes or fluorophore-conjugated antibodies allow for measurement of protein expression, identification of cell populations, or DNA content analysis. This is combined with analysis of light-scattering detection to determine cell size and complexity to allow for the study of complex cell samples, such as whole blood. Through antibody staining for a variety of surface markers as well as intracellular proteins we can also elucidate intracellular signaling, and phosphor-signaling, on a single-cell basis.

Here we describe the application of flow cytometry analysis to the tumor suppressor PTEN in various cancer cell lines and a mouse model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown M, Wittwer C (2000) Flow cytometry: principles and clinical applications in hematology. Clin Chem 46:1221–1229

    CAS  PubMed  Google Scholar 

  2. Shapiro H (2003) Practical flow cytometry, 4th edn. Wiley-Liss, New York

    Book  Google Scholar 

  3. Picot J, Guerin CL, Le Van Kim C, Boulanger CM (2012) Flow cytometry: retrospective, fundamentals and recent instrumentation. Cytotechnology 64:109–130. doi:10.1007/s10616-011-9415-0

    Article  PubMed  PubMed Central  Google Scholar 

  4. Krutzik PO, Irish JM, Nolan GP, Perez OD (2004) Analysis of protein phosphorylation and cellular signaling events by flow cytometry: techniques and clinical applications. Clin Immunol 110:206–221. doi:10.1016/j.clim.2003.11.009

    Article  CAS  PubMed  Google Scholar 

  5. Krutzik PO, Clutter MR, Nolan GP (2005) Coordinate analysis of murine immune cell surface markers and intracellular phosphoproteins by flow cytometry. J Immunol 175:2357–2365. doi:10.4049/jimmunol.175.4.2357

    Article  CAS  PubMed  Google Scholar 

  6. Collins S, Gallo R, Gallagher R (1977) Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture. Nature 270:347–349. doi:10.1038/270347a0

    Article  CAS  PubMed  Google Scholar 

  7. Breitman TR, Collins SJ, Keene BR (1980) Replacement of serum by insulin and transferrin supports growth and differentiation of the human promyelocytic cell line, HL-60. Exp Cell Res 126:494–498. doi:10.1016/0014-4827(80)90296-7

    Article  CAS  PubMed  Google Scholar 

  8. Sundström C, Nilsson K (1976) Establishment and characterization of a human histiocytic lymphoma cell line (U-937). Int J Cancer 17:565–577

    Article  PubMed  Google Scholar 

  9. Phillips TA, Ni J, Pan G et al (1999) TRAIL (Apo-2L) and TRAIL receptors in human placentas: implications for immune privilege. J Immunol 162:6053–6059

    CAS  PubMed  Google Scholar 

  10. Wang C, Curtis J, Minden M, McCulloch E (1989) Expression of a retinoic acid receptor gene in myeloid leukemia cells. Leukemia 3:264–269

    CAS  PubMed  Google Scholar 

  11. Hollink IHIM, Feng Q, Danen-van Oorschot AA et al (2012) Low frequency of DNMT3A mutations in pediatric AML, and the identification of the OCI-AML3 cell line as an in vitro model. Leukemia 26:371–373. doi:10.1038/leu.2011.210

    Article  CAS  PubMed  Google Scholar 

  12. Lange B, Valtieri M, Santoli D et al (1987) Growth factor requirements of childhood acute leukemia: establishment of GM-CSF-dependent cell lines. Blood 70:192–199

    CAS  PubMed  Google Scholar 

  13. Quentmeier H, Reinhardt J, Zaborski M, Drexler HG (2003) FLT3 mutations in acute myeloid leukemia cell lines. Leukemia 17:120–124. doi:10.1038/sj.leu.2402740

    Article  CAS  PubMed  Google Scholar 

  14. Shen FW, Saga Y, Litman G et al (1985) Cloning of Ly-5 cDNA. Proc Natl Acad Sci U S A 82:7360–7363. doi:10.1073/pnas.82.21.7360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Haycocks NG, Lawrence L, Cain JW, Zhao XF (2011) Optimizing antibody panels for efficient and cost-effective flow cytometric diagnosis of acute leukemia. Cytometry B Clin Cytom 80B:221–229. doi:10.1002/cyto.b.20586

    Article  Google Scholar 

  16. Bossuyt X, Marti GE, Fleisher TA (1997) Comparative analysis of whole blood lysis methods for flow cytometry. Cytometry 30:124–133

    Article  CAS  PubMed  Google Scholar 

  17. Fox C, Johnson F, Whiting J, Roller P (1985) Formaldehyde fixation. J Histochem Cytochem 33:845–853. doi:10.1056/NEJMra1313875

    Article  CAS  PubMed  Google Scholar 

  18. Pollice AA, McCoy JP, Shackney SE et al (1992) Sequential paraformaldehyde and methanol fixation for simultaneous flow cytometric analysis of DNA, cell surface proteins, and intracellular proteins. Cytometry 13:432–444. doi:10.1002/cyto.990130414

    Article  CAS  PubMed  Google Scholar 

  19. Le Maire M, Champeil P, Møller JV (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta 1508:86–111. doi:10.1016/S0304-4157(00)00010-1

    Article  PubMed  Google Scholar 

  20. Dahia PLM, Aguiar RCT, Alberta J et al (1999) PTEN is inversely correlated with the cell survival factor Akt/PKB and is inactivated via multiple mechanisms in haematological malignancies. Hum Mol Genet 8:185–193. doi:10.1093/hmg/8.2.185

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research in the Salmena lab is supported by funds from Canada Research Chairs, Human Frontier Science Program Organization, Leukemia and Lymphoma Society of Canada, Canadian Cancer Society, and the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Woolley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Woolley, J.F., Salmena, L. (2016). Measurement of PTEN by Flow Cytometry. In: Salmena, L., Stambolic, V. (eds) PTEN. Methods in Molecular Biology, vol 1388. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3299-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3299-3_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3297-9

  • Online ISBN: 978-1-4939-3299-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics