Skip to main content

Molecular Characterization of Polio from Environmental Samples: ISSP, The Israeli Sewage Surveillance Protocol

  • Protocol
Poliovirus

Abstract

Polioviruses are enteric viruses that cause paralytic poliomyelitis in less than 0.5 % of infections and are asymptomatic in >90 % infections of naïve hosts. Environmental surveillance monitors polio in populations rather than in individuals. When this very low morbidity to infection ratio, drops drastically in highly vaccinated populations, environmental surveillance employing manual or automatic sampling coupled with molecular analysis carried out in well-equipped central laboratories becomes the surveillance method of choice since polioviruses are excreted by infected individuals regardless of whether or not the infection is symptomatic. This chapter describes a high throughput rapid turn-around time method for molecular characterization of polioviruses from sewage. It is presented in five modules: (1) Sewage collection and concentration of the viruses in the sewage; (2) Cell cultures for identification of virus in the concentrated sewage; (3) Nucleic acid extractions directly from sewage and from tissue cultures infected with aliquots of concentrated sewage; (4) Nucleic Acid Amplification for poliovirus serotype identification and intratypic differentiation (discriminating wild and vaccine derived polioviruses form vaccine strains); and (5) Molecular characterization of viral RNA by qRT-PCR, TR-PCR, and Sequence analysis. Monitoring silent or symptomatic transmission of vaccine-derived polioviruses or wild polioviruses is critical for the endgame of poliovirus eradication. We present methods for adapting standard kits and validating the changes for this purpose based on experience gained during the recent introduction and sustained transmission of a wild type 1 poliovirus in Israel in 2013 in a population with an initial IPV vaccine coverage >90 %.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFP:

Acute flaccid paralysis

AR:

Analytic reagent grade chemicals

bp:

Base pairs

BSL-2:

Biological safety level two

CDC:

Centers for Disease Control and Prevention, Atlanta, GA, USA

CPE:

Cytopathic effect—morphological changes in cells resulting from infection

Ct:

Cycle threshold, the cycle at which specific signal from the probe is first detected above the threshold of detection in qRT-PCR

FBS:

Fetal bovine serum

GPEI:

Global Poliovirus Eradication Initiative

IPV:

Inactivated polio vaccine (trivalent contains all three Salk serotypes)

ITD:

Intratypic differentiation, e.g., determining whether the isolate is vaccine-like, VDPV, or wild

MOI:

Multiplicity of infection

OPV:

Live oral poliovirus (trivalent contains all three Sabin serotypes bivalent contains Sabin serotypes 1 and 3, monovalent contains either serotype 1, 2, or 3, exclusively)

PCR:

Polymerase chain reaction

PFU:

Plaque forming units

qRT-PCR:

Quantitative reverse transcription polymerase chain reaction

RT-PCR:

Reverse transcription polymerase chain reaction

SIA:

Supplementary Immunization Activities

TD:

Typic differentiation determining the serotype of the virus of interest

VDPV:

Vaccine-derived polio virus

VP1:

Viral capsid protein 1

VP2:

Viral capsid protein 2

VP3:

Viral capsid protein 3

VP4:

Viral capsid protein 4

WHO:

World Health Organization

5′ UTR:

5′ untranslated region of polio and non-polio enteroviruses

References

  1. Racaniello VR (2001) Picornaviridae: the viruses and their replication. In: Fields BN, Knipe N, Howley P (eds) Virology, 4th edn. Lippincott Williams & Wilkins, Philadelphia, PA, pp 685–722

    Google Scholar 

  2. Shulman LM (2012) Polio and its epidemiology. In: Meyers RA (ed) SpringerLink (Online service). Encyclopedia of sustainability science and technology. Springer, New York, pp 8123–8173

    Chapter  Google Scholar 

  3. Dowdle W, van der Avoort H, de Gourville E, Delpeyroux F, Desphande J, Hovi T, Martin J, Pallansch M, Kew O, Wolff C (2006) Containment of polioviruses after eradication and OPV cessation: characterizing risks to improve management. Risk Anal 26(6):1449–1469

    Article  PubMed  Google Scholar 

  4. Kew OM, Sutter RW, de Gourville EM, Dowdle WR, Pallansch MA (2005) Vaccine-derived polioviruses and the endgame strategy for global polio eradication. Annu Rev Microbiol 59:587–635

    Article  CAS  PubMed  Google Scholar 

  5. Hovi T, Shulman LM, van der Avoort H, Deshpande J, Roivainen M, De Gourville EM (2012) Role of environmental poliovirus surveillance in global polio eradication and beyond. Epidemiol Infect 140(1):1–13

    Article  CAS  PubMed  Google Scholar 

  6. Ranta J, Hovi T, Arjas E (2001) Poliovirus surveillance by examining sewage water specimens: studies on detection probability using simulation models. Risk Anal 21(6):1087–1096

    Article  CAS  PubMed  Google Scholar 

  7. WHO (2003) Guidelines for environmental surveillance of poliovirus circulation: WHO, Dept of Vaccines and Biologicals. http://apps.who.int/iris/handle/10665/67854. Last accessed 23 July 2014

  8. Hovi T, Stenvik M, Partanen H, Kangas A (2001) Poliovirus surveillance by examining sewage specimens. Quantitative recovery of virus after introduction into sewerage at remote upstream location. Epidemiol Infect 127(1):101–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hindiyeh MY, Moran-Gilad J, Manor Y, Ram D, Shulman LM, Sofer D, Mendelson E (2014) Development and validation of a quantitative RT-PCR assay for investigation of wild type poliovirus 1 (SOAS) reintroduced into Israel. Euro Surveill 19(7):pii: 207103800

    Article  Google Scholar 

  10. Lodder WJ, Buisman AM, Rutjes SA, Heijne JC, Teunis PF, de Roda Husman AM (2012) Feasibility of quantitative environmental surveillance in poliovirus eradication strategies. Appl Environ Microbiol 78(11):3800–3805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shulman LM, Manor Y, Sofer D, Mendelson E (2012) Bioterrorism and surveillance for infectious diseases—lessons from poliovirus and enteric virus surveillance. J Bioterr Biodef S4:004

    Google Scholar 

  12. WHO (2004) Polio laboratory manual, 4th ed. WHO/IVB/04.10, WHO

    Google Scholar 

  13. Anis E, Kopel E, Singer SR, Kaliner E, Moerman L, Moran-Gilad J, Sofer D, Manor Y, Shulman LM, Mendelson E, Gdalevich M, Lev B, Gamzu R, Grotto I (2013) Insidious reintroduction of wild poliovirus into Israel, 2013. Euro Surveill 18(38):pii: 20586

    Article  Google Scholar 

  14. Shulman LM, Hindiyeh M, Muhsen K, Cohen D, Mendelson E, Sofer D (2012) Evaluation of four different systems for extraction of RNA from stool suspensions using MS-2 coliphage as an exogenous control for RT-PCR inhibition. PLoS One 7(7):e39455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Manor Y, Shulman LM, Hindiyeh M, Ram D, Sofer D, Moran-Gilad J, Lev B, Grotto I, Gamzu R, Mendelson E (2014) Intensified environmental surveillance supporting the response to wild-type poliovirus type 1 silent circulation in Israel, 2013. Euro Surveill 19(7):20708

    Article  CAS  PubMed  Google Scholar 

  16. Shulman LM, Gavrilin E, Jorba J, Martin J, Burns CC, Manor Y, Moran-Gilad J, Sofer D, Hindiyeh MY, Gamzu R, Mendelson E, Grotto I, Genotype-Phenotype_Identification_(GPI)_Group (2014) Molecular epidemiology of silent introduction and sustained transmission of wild poliovirus type 1, Israel, 2013. Euro Surveill 19(7):pii=20709, Available online: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20709

    Article  Google Scholar 

  17. Saunders N, Zambon M, Sharp I, Siddiqui R, Bermingham A, Ellis J, Vipond B, Sails A, Moran-Gilad J, Marsh P, Guiver M, Division HPAMS (2013) Guidance on the development and validation of diagnostic tests that depend on nucleic acid amplification and detection. J Clin Virol 56(3):260–270

    Article  PubMed  Google Scholar 

  18. Dreier J, Stormer M, Kleesiek K (2005) Use of bacteriophage MS2 as an internal control in viral reverse transcription-PCR assays. J Clin Microbiol 43(9):4551–4557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kilpatrick DR, Yang CF, Ching K, Vincent A, Iber J, Campagnoli R, Mandelbaum M, De L, Yang SJ, Nix A, Kew OM (2009) Rapid group-, serotype-, and vaccine strain-specific identification of poliovirus isolates by real-time reverse transcription-PCR using degenerate primers and probes containing deoxyinosine residues. J Clin Microbiol 47(6):1939–1941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94(3):441–448

    Article  CAS  PubMed  Google Scholar 

  21. Kilpatrick DR, Ching K, Iber J, Campagnoli R, Freeman CJ, Mishrik N, Liu HM, Pallansch MA, Kew OM (2004) Multiplex PCR method for identifying recombinant vaccine-related polioviruses. J Clin Microbiol 42(9):4313–4315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kilpatrick DR, Nottay B, Yang CF, Yang SJ, Da Silva E, Penaranda S, Pallansch M, Kew O (1998) Serotype-specific identification of polioviruses by PCR using primers containing mixed-base or deoxyinosine residues at positions of codon degeneracy. J Clin Microbiol 36(2):352–357

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kilpatrick DR, Nottay B, Yang CF, Yang SJ, Mulders MN, Holloway BP, Pallansch MA, Kew OM (1996) Group-specific identification of polioviruses by PCR using primers containing mixed-base or deoxyinosine residue at positions of codon degeneracy. J Clin Microbiol 34(12):2990–2996

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Westgard JO, Groth T, Aronsson T, Falk H, de Verdier CH (1977) Performance characteristics of rules for internal quality control: probabilities for false rejection and error detection. Clin Chem 23(10):1857–1867

    CAS  PubMed  Google Scholar 

  25. Westgard JO, Barry PL, Hunt MR, Groth T (1981) A multi-rule Shewhart chart for quality control in clinical chemistry. Clin Chem 27(3):493–501

    CAS  PubMed  Google Scholar 

  26. Levey S, Jennings ER (1950) The use of control charts in the clinical laboratory. Am J Clin Pathol 20(11):1059–1066

    CAS  PubMed  Google Scholar 

  27. Toyoda H, Kohara M, Kataoka Y, Suganuma T, Omata T, Imura N, Nomoto A (1984) Complete nucleotide sequences of all three poliovirus serotype genomes. Implication for genetic relationship, gene function and antigenic determinants. J Mol Biol 174:561–585

    Article  CAS  PubMed  Google Scholar 

  28. Kilpatrick DR, Iber JC, Chen Q, Ching K, Yang SJ, De L, Mandelbaum MD, Emery B, Campagnoli R, Burns CC, Kew O (2011) Poliovirus serotype-specific VP1 sequencing primers. J Virol Methods 174:128–130

    Article  CAS  PubMed  Google Scholar 

  29. Centers for Disease Control and Prevention, Atlanta, GA., Kit Instructions In: Poliovirus rRT-PCR ITD 4.0 Kit. A kit for serotyping of L20B positive cell cultures and intratypic differentiation of polioviruses in support of the Global Polio Eradication Initiative. Distributed by The WHO Collaborating Centre for Enteroviruses and Polioviruses, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop G-10, Atlanta, Georgia 30333 USA, +1-404-639-1341, Fax: +1-404-639-4011. Email: MMandelbaum@cdc.gov, HSun@cdc.gov, SOberste@cdc.gov. November 20, 2014

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lester M. Shulman Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Shulman, L.M., Manor, Y., Hindiyeh, M., Sofer, D., Mendelson, E. (2016). Molecular Characterization of Polio from Environmental Samples: ISSP, The Israeli Sewage Surveillance Protocol. In: Martín, J. (eds) Poliovirus. Methods in Molecular Biology, vol 1387. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3292-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3292-4_5

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3291-7

  • Online ISBN: 978-1-4939-3292-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics