Skip to main content

Third-Kind Encounters in Biomedicine: Immunology Meets Mathematics and Informatics to Become Quantitative and Predictive

  • Protocol
Systems Medicine

Abstract

The understanding of the immune response is right now at the center of biomedical research. There are growing expectations that immune-based interventions will in the midterm provide new, personalized, and targeted therapeutic options for many severe and highly prevalent diseases, from aggressive cancers to infectious and autoimmune diseases. To this end, immunology should surpass its current descriptive and phenomenological nature, and become quantitative, and thereby predictive.

Immunology is an ideal field for deploying the tools, methodologies, and philosophy of systems biology, an approach that combines quantitative experimental data, computational biology, and mathematical modeling. This is because, from an organism-wide perspective, the immunity is a biological system of systems, a paradigmatic instance of a multi-scale system. At the molecular scale, the critical phenotypic responses of immune cells are governed by large biochemical networks, enriched in nested regulatory motifs such as feedback and feedforward loops. This network complexity confers them the ability of highly nonlinear behavior, including remarkable examples of homeostasis, ultra-sensitivity, hysteresis, and bistability. Moving from the cellular level, different immune cell populations communicate with each other by direct physical contact or receiving and secreting signaling molecules such as cytokines. Moreover, the interaction of the immune system with its potential targets (e.g., pathogens or tumor cells) is far from simple, as it involves a number of attack and counterattack mechanisms that ultimately constitute a tightly regulated multi-feedback loop system. From a more practical perspective, this leads to the consequence that today’s immunologists are facing an ever-increasing challenge of integrating massive quantities from multi-platforms.

In this chapter, we support the idea that the analysis of the immune system demands the use of systems-level approaches to ensure the success in the search for more effective and personalized immune-based therapies.

*These authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vera J, Wolkenhauer O (2008) Chapter 17: a system biology approach to understand functional activity of cell communication systems. Methods Nano Cell Biol 90:399–415. doi:10.1016/s0091-679x(08)00817-0

    Article  CAS  Google Scholar 

  2. Wolkenhauer O, Auffray C, Baltrusch S et al (2009) Systems biologists seek fuller integration of systems biology approaches in new cancer research programs. Cancer Res 70:12–13. doi:10.1158/0008-5472.can-09-2676

    Article  PubMed Central  PubMed  Google Scholar 

  3. Wolkenhauer O, Auffray C, Jaster R et al (2013) The road from systems biology to systems medicine. Pediatr Res 73:502–507. doi:10.1038/pr.2013.4

    Article  PubMed  Google Scholar 

  4. Vera J, Gupta SK, Wolkenhauer O, Schuler G (2014) Envisioning the application of systems biology in cancer immunology. Cancer Immunol 429–449. doi: 10.1007/978-3-662-44006-3_23

    Google Scholar 

  5. Voit E (2012) A first course in systems biology, 1st edn. Garland Science, New York

    Google Scholar 

  6. Mesarović MD (1968) Systems theory and biology—view of a theoretician. In: Mesarović MD (ed) Syst theory biol. Springer, Berlin, pp 59–87

    Chapter  Google Scholar 

  7. Savageau MA, Rosen R (1976) Biochemical systems analysis: a study of function and design in molecular biology. Addison-Wesley, Reading, MA

    Google Scholar 

  8. Yan Q (2010) Immunoinformatics and systems biology methods for personalized medicine. Syst Biol Drug Discov Dev 662:203–220. doi:10.1007/978-1-60761-800-3_10

    Article  CAS  Google Scholar 

  9. Kidd BA, Peters LA, Schadt EE, Dudley JT (2014) Unifying immunology with informatics and multiscale biology. Nat Immunol 15:118–127. doi:10.1038/ni.2787

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Gupta SK, Gupta SK, Smita S et al (2011) Computational analysis and modeling the effectiveness of “Zanamivir” targeting neuraminidase protein in pandemic H1N1 strains. Infect Genet Evol 11:1072–1082. doi:10.1016/j.meegid.2011.03.018

    Article  CAS  PubMed  Google Scholar 

  11. Vera J, Schmitz U, Lai X et al (2013) Kinetic modeling-based detection of genetic signatures that provide chemoresistance via the E2F1-p73/DNp73\mbox-miR-205 network. Cancer Res 73:3511–3524. doi:10.1158/0008-5472.can-12-4095

    Article  CAS  PubMed  Google Scholar 

  12. Blythe MJ, Doytchinova IA, Flower DR (2002) JenPep: a database of quantitative functional peptide data for immunology. Bioinformatics 18:434–439

    Article  CAS  PubMed  Google Scholar 

  13. Rammensee H-G (2003) Immunoinformatics: bioinformatic strategies for better understanding of immune function. Introduction. Novartis Found Symp 254:1–2

    Article  PubMed  Google Scholar 

  14. Brusic V, Petrovsky N (2003) Immunoinformatics–the new kid in town. Novartis Found Symp 254:3–13, discussion 13–22, 98–101, 250–2

    Article  CAS  PubMed  Google Scholar 

  15. Tomar N, De RK (2010) Immunoinformatics: an integrated scenario. Immunology 131:153–168. doi:10.1111/j.1365-2567.2010.03330.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Tomar N, De RK (2014) Immunoinformatics: a brief review. Methods Mol Biol 1184:23–55. doi:10.1007/978-1-4939-1115-8_3

    Article  PubMed  Google Scholar 

  17. Greenbaum JA, Andersen PH, Blythe M et al (2007) Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools. J Mol Recognit 20:75–82. doi:10.1002/jmr.815

    Article  CAS  PubMed  Google Scholar 

  18. Tong JC, Ren EC (2009) Immunoinformatics: current trends and future directions. Drug Discov Today 14:684–689. doi:10.1016/j.drudis.2009.04.001

    Article  CAS  PubMed  Google Scholar 

  19. Saha S, Bhasin M, Raghava GPS (2005) Bcipep: a database of B-cell epitopes. BMC Genomics 6:79. doi:10.1186/1471-2164-6-79

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Bui H-H, Peters B, Assarsson E et al (2007) Ab and T cell epitopes of influenza A virus, knowledge and opportunities. Proc Natl Acad Sci U S A 104:246–251. doi:10.1073/pnas.0609330104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Müller GM, Shapira M, Arnon R (1982) Anti-influenza response achieved by immunization with a synthetic conjugate. Proc Natl Acad Sci U S A 79:569–573

    Article  PubMed Central  PubMed  Google Scholar 

  22. Naruse H, Ogasawara K, Kaneda R et al (1994) A potential peptide vaccine against two different strains of influenza virus isolated at intervals of about 10 years. Proc Natl Acad Sci U S A 91:9588–9592

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. El-Manzalawy Y, Dobbs D, Honavar V (2008) Predicting protective linear B-cell epitopes using evolutionary information. 2008 IEEE Int Conf Bioinforma Biomed. doi: 10.1109/bibm.2008.80

  24. Sollner J, Grohmann R, Rapberger R et al (2008) Analysis and prediction of protective continuous B-cell epitopes on pathogen proteins. Immunome Res 4:1. doi:10.1186/1745-7580-4-1

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Vita R, Overton JA, Greenbaum JA et al (2015) The immune epitope database (IEDB) 3.0. Nucleic Acids Res 43:D405–D412. doi:10.1093/nar/gku938

    Article  PubMed Central  PubMed  Google Scholar 

  26. Odorico M, Pellequer J-L (2003) BEPITOPE: predicting the location of continuous epitopes and patterns in proteins. J Mol Recognit 16:20–22. doi:10.1002/jmr.602

    Article  CAS  PubMed  Google Scholar 

  27. Ponomarenko J, Bui H-H, Li W et al (2008) ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics 9:514. doi:10.1186/1471-2105-9-514

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Saha S, Raghava GPS (2006) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65:40–48. doi:10.1002/prot.21078

    Article  CAS  PubMed  Google Scholar 

  29. Sweredoski MJ, Baldi P (2009) COBEpro: a novel system for predicting continuous B-cell epitopes. Protein Eng Des Sel 22:113–120. doi:10.1093/protein/gzn075

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Larsen J, Lund O, Nielsen M (2006) Improved method for predicting linear B cell epitopes. Immunome Res 2:2. doi:10.1186/1745-7580-2-2

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Kringelum JV, Lundegaard C, Lund O, Nielsen M (2012) Reliable B cell epitope predictions: impacts of method development and improved benchmarking. PLoS Comput Biol 8, e1002829. doi:10.1371/journal.pcbi.1002829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Hamelryck T (2005) An amino acid has two sides: a new 2D measure provides a different view of solvent exposure. Proteins 59:38–48. doi:10.1002/prot.20379

    Article  CAS  PubMed  Google Scholar 

  33. Sweredoski MJ, Baldi P (2008) PEPITO: improved discontinuous B-cell epitope prediction using multiple distance thresholds and half sphere exposure. Bioinformatics 24:1459–1460. doi:10.1093/bioinformatics/btn199

    Article  CAS  PubMed  Google Scholar 

  34. Bublil EM, Freund NT, Mayrose I et al (2007) Stepwise prediction of conformational discontinuous B-cell epitopes using the Mapitope algorithm. Proteins 68:294–304. doi:10.1002/prot.21387

    Article  CAS  PubMed  Google Scholar 

  35. Zhang W (2012) Bpredictor (https://code.google.com/p/my-project-bpredictor/). Accessed 1 Apr 2015

  36. Zhang W, Xiong Y, Zhao M et al (2011) Prediction of conformational B-cell epitopes from 3D structures by random forests with a distance-based feature. BMC Bioinformatics 12:341. doi:10.1186/1471-2105-12-341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Moreau V, Granier C, Villard S et al (2006) Discontinuous epitope prediction based on mimotope analysis. Bioinformatics 22:1088–1095. doi:10.1093/bioinformatics/btl012

    Article  CAS  PubMed  Google Scholar 

  38. Pizzi E, Cortese R, Tramontano A (1995) Mapping epitopes on protein surfaces. Biopolymers 36:675–680. doi:10.1002/bip.360360513

    Article  CAS  PubMed  Google Scholar 

  39. Evans MC (2008) Recent advances in immunoinformatics: application of in silico tools to drug development. Curr Opin Drug Discov Dev 11:233–241

    CAS  Google Scholar 

  40. Mayrose I, Shlomi T, Rubinstein ND et al (2007) Epitope mapping using combinatorial phage-display libraries: a graph-based algorithm. Nucleic Acids Res 35:69–78. doi:10.1093/nar/gkl975

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Huang J, Gutteridge A, Honda W, Kanehisa M (2006) MIMOX: a web tool for phage display based epitope mapping. BMC Bioinformatics 7:451. doi:10.1186/1471-2105-7-451

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Mayrose I, Penn O, Erez E et al (2007) Pepitope: epitope mapping from affinity-selected peptides. Bioinformatics 23:3244–3246. doi:10.1093/bioinformatics/btm493

    Article  CAS  PubMed  Google Scholar 

  43. Huang YX, Bao YL, Guo SY et al (2008) Pep-3D-search: a method for B-cell epitope prediction based on mimotope analysis. BMC Bioinformatics 9:538. doi:10.1186/1471-2105-9-538

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Schreiber A, Humbert M, Benz A, Dietrich U (2005) 3D-Epitope-Explorer (3DEX): localization of conformational epitopes within three-dimensional structures of proteins. J Comput Chem 26:879–887. doi:10.1002/jcc.20229

    Article  CAS  PubMed  Google Scholar 

  45. Huang J, Ru B, Zhu P et al (2012) MimoDB 2.0: a mimotope database and beyond. Nucleic Acids Res 40:D271–D277. doi:10.1093/nar/gkr922

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Söllner J (2006) Selection and combination of machine learning classifiers for prediction of linear B-cell epitopes on proteins. J Mol Recognit 19:209–214. doi:10.1002/jmr.770

    Article  PubMed  CAS  Google Scholar 

  47. Bhasin M, Raghava GPS (2003) Prediction of promiscuous and high-affinity mutated MHC binders. Hybrid Hybridomics 22:229–234. doi:10.1089/153685903322328956

    Article  CAS  PubMed  Google Scholar 

  48. Huang L, Dai Y (2006) Direct prediction of T-cell epitopes using support vector machines with novel sequence encoding schemes. J Bioinform Comput Biol 4:93–107

    Article  CAS  PubMed  Google Scholar 

  49. Parker JM, Guo D, Hodges RS (1986) New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry (Mosc) 25:5425–5432

    Article  CAS  Google Scholar 

  50. Zhang GL, Petrovsky N, Kwoh CK et al (2006) PRED(TAP): a system for prediction of peptide binding to the human transporter associated with antigen processing. Immunome Res 2:3. doi:10.1186/1745-7580-2-3

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Buus S, Lauemøller SL, Worning P et al (2003) Sensitive quantitative predictions of peptide-MHC binding by a “Query by Committee” artificial neural network approach. Tissue Antigens 62:378–384

    Article  CAS  PubMed  Google Scholar 

  52. Nielsen M, Lundegaard C, Worning P et al (2003) Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 12:1007–1017. doi:10.1110/ps.0239403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Nanni L (2006) Machine learning algorithms for T-cell epitopes prediction. Neurocomput 69:866–868. doi:10.1016/j.neucom.2005.08.005

    Article  Google Scholar 

  54. Bhasin M, Raghava GPS (2005) Pcleavage: an SVM based method for prediction of constitutive proteasome and immunoproteasome cleavage sites in antigenic sequences. Nucleic Acids Res 33:W202–W207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Lapinsh M, Prusis P, Gutcaits A et al (2001) Development of proteo-chemometrics: a novel technology for the analysis of drug-receptor interactions. Biochim Biophys Acta 1525:180–190

    Article  CAS  PubMed  Google Scholar 

  56. Doytchinova I, Flower D (2008) QSAR and the prediction of T-cell epitopes. CP 5:73–95. doi:10.2174/157016408784911945

    Article  CAS  Google Scholar 

  57. Tian F, Lv F, Zhou P et al (2008) Toward prediction of binding affinities between the MHC protein and its peptide ligands using quantitative structure-affinity relationship approach. Protein Pept Lett 15:1033–1043

    Article  CAS  PubMed  Google Scholar 

  58. Zhao C, Zhang H, Luan F et al (2007) QSAR method for prediction of protein-peptide binding affinity: application to MHC class I molecule HLA-A*0201. J Mol Graph Model 26:246–254. doi:10.1016/j.jmgm.2006.12.002

    Article  CAS  PubMed  Google Scholar 

  59. Kangueane P, Sakharkar MK (2005) T-Epitope designer: a HLA-peptide binding prediction server. Bioinformation 1:21–24

    Article  PubMed Central  PubMed  Google Scholar 

  60. Zhang W, Niu Y, Xiong Y et al (2012) Computational prediction of conformational B-cell epitopes from antigen primary structures by ensemble learning. PLoS One 7:e43575. doi:10.1371/journal.pone.0043575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Guan P, Doytchinova IA, Zygouri C, Flower DR (2003) MHCPred: a server for quantitative prediction of peptide-MHC binding. Nucleic Acids Res 31:3621–3624. doi:10.1093/nar/gkg510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Jojic N, Reyes-Gomez M, Heckerman D et al (2006) Learning MHC I–peptide binding. Bioinformatics 22:e227–e235. doi:10.1093/bioinformatics/btl255

    Article  CAS  PubMed  Google Scholar 

  63. Miyazawa S, Jernigan RL (1996) Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J Mol Biol 256:623–644. doi:10.1006/jmbi.1996.0114

    Article  CAS  PubMed  Google Scholar 

  64. Gupta SK, Singh A, Srivastava M et al (2009) In silico DNA vaccine designing against human papillomavirus (HPV) causing cervical cancer. Vaccine 28:120–131. doi:10.1016/j.vaccine.2009.09.095

    Article  PubMed  CAS  Google Scholar 

  65. Schueler-Furman O, Altuvia Y, Sette A, Margalit H (2000) Structure-based prediction of binding peptides to MHC class I molecules: application to a broad range of MHC alleles. Protein Sci 9:1838–1846. doi:10.1110/ps.9.9.1838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Brusic V, Rudy G, Honeyman G et al (1998) Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics 14:121–130. doi:10.1093/bioinformatics/14.2.121

    Article  CAS  PubMed  Google Scholar 

  67. Doytchinova IA, Guan P, Flower DR (2006) EpiJen: a server for multistep T cell epitope prediction. BMC Bioinformatics 7:131. doi:10.1186/1471-2105-7-131

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Lundegaard C, Lamberth K, Harndahl M et al (2008) NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11. Nucleic Acids Res 36:W509–W512. doi:10.1093/nar/gkn202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Rammensee H, Bachmann J, Emmerich NP et al (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50:213–219

    Article  CAS  PubMed  Google Scholar 

  70. Sathiamurthy M, Peters B, Bui H-H et al (2005) An ontology for immune epitopes: application to the design of a broad scope database of immune reactivities. Immunome Res 1:2. doi:10.1186/1745-7580-1-2

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. Lefranc M-P, Giudicelli V, Ginestoux C et al (2009) IMGT, the international ImMunoGeneTics information system. Nucleic Acids Res 37:D1006–D1012. doi:10.1093/nar/gkn838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Robinson J, Mistry K, McWilliam H et al (2011) The IMGT/HLA database. Nucleic Acids Res 39:D1171–D1176. doi:10.1093/nar/gkq998

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. King TP, Hoffman D, Lowenstein H et al (1994) Allergen nomenclature. WHO/IUIS Allergen Nomenclature Subcommittee. Int Arch Allergy Immunol 105:224–233

    Article  CAS  PubMed  Google Scholar 

  74. Kim C, Kwon S, Lee G et al (2009) A database for allergenic proteins and tools for allergenicity prediction. Bioinformation 3:344–345

    Article  PubMed Central  PubMed  Google Scholar 

  75. Mari A, Scala E, Palazzo P et al (2006) Bioinformatics applied to allergy: allergen databases, from collecting sequence information to data integration. The Allergome platform as a model. Cell Immunol 244:97–100. doi:10.1016/j.cellimm.2007.02.012

    Article  CAS  PubMed  Google Scholar 

  76. Ivanciuc O, Schein CH, Braun W (2003) SDAP: database and computational tools for allergenic proteins. Nucleic Acids Res 31:359–362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Irizarry RA, Hobbs B, Collin F et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264. doi:10.1093/biostatistics/4.2.249

    Article  PubMed  Google Scholar 

  78. Lim WK, Wang K, Lefebvre C, Califano A (2007) Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks. Bioinformatics 23:i282–i288. doi:10.1093/bioinformatics/btm201

    Article  CAS  PubMed  Google Scholar 

  79. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  80. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300

    Google Scholar 

  81. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci 98:5116–5121. doi:10.1073/pnas.091062498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:1–25. doi:10.2202/1544–6115.1027

  83. Opgen-Rhein R, Strimmer K (2007) Accurate ranking of differentially expressed genes by a distribution-free shrinkage approach. Stat Appl Genet Mol Biol 6:1544-6115. doi: 10.2202/1544-6115.1252

    Google Scholar 

  84. Boulesteix A-L, Slawski M (2009) Stability and aggregation of ranked gene lists. Brief Bioinform 10:556–568. doi:10.1093/bib/bbp034

    Article  CAS  PubMed  Google Scholar 

  85. Soneson C, Delorenzi M (2013) A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics 14:91. doi:10.1186/1471-2105-14-91

    Article  PubMed Central  PubMed  Google Scholar 

  86. Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13. doi:10.1093/nar/gkn923

    Article  PubMed Central  CAS  Google Scholar 

  87. Huang DW, Sherman BT, Lempicki RA (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57. doi:10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  88. Croft D, Mundo AF, Haw R et al (2014) The Reactome pathway knowledgebase. Nucleic Acids Res 42:D472–D477. doi:10.1093/nar/gkt1102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Drâghici S, Khatri P, Martins RP et al (2003) Global functional profiling of gene expression. Genomics 81:98–104. doi:10.1016/S0888-7543(02)00021-6

    Article  PubMed  CAS  Google Scholar 

  90. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 102:15545–15550. doi:10.1073/pnas.0506580102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Franceschini A, Szklarczyk D, Frankild S et al (2013) STRING v9.1: protein–protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:D808–D815. doi:10.1093/nar/gks1094

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Saris CG, Horvath S, van Vught PW et al (2009) Weighted gene co-expression network analysis of the peripheral blood from Amyotrophic Lateral Sclerosis patients. BMC Genomics 10:405. doi:10.1186/1471-2164-10-405

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  93. Beyer M, Mallmann MR, Xue J et al (2012) High-resolution transcriptome of human macrophages. PLoS One 7, e45466. doi:10.1371/journal.pone.0045466

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Xue J, Schmidt SV, Sander J et al (2014) Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40:274–288. doi:10.1016/j.immuni.2014.01.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Raza S, Robertson KA, Lacaze PA et al (2008) A logic-based diagram of signalling pathways central to macrophage activation. BMC Syst Biol 2:36. doi:10.1186/1752-0509-2-36

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  96. Weintz G, Olsen JV, Frühauf K et al (2010) The phosphoproteome of toll-like receptor-activated macrophages. Mol Syst Biol 6:371. doi:10.1038/msb.2010.29

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  97. Jin P, Han TH, Ren J et al (2010) Molecular signatures of maturing dendritic cells: implications for testing the quality of dendritic cell therapies. J Transl Med 8:4. doi:10.1186/1479-5876-8-4

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  98. Chaussabel D, Quinn C, Shen J et al (2008) A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus. Immunity 29:150–164. doi:10.1016/j.immuni.2008.05.012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Chang HH, Hemberg M, Barahona M et al (2008) Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453:544–547. doi:10.1038/nature06965

    Article  CAS  PubMed  Google Scholar 

  100. Tsang JS, Schwartzberg PL, Kotliarov Y et al (2014) Global analyses of human immune variation reveal baseline predictors of postvaccination responses. Cell 157:499–513. doi:10.1016/j.cell.2014.03.031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Querec TD, Akondy RS, Lee EK et al (2009) Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol 10:116–125. doi:10.1038/ni.1688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Vahey MT, Wang Z, Kester KE et al (2010) Expression of genes associated with immunoproteasome processing of major histocompatibility complex peptides is indicative of protection with adjuvanted RTS, S malaria vaccine. J Infect Dis 201:580–589. doi:10.1086/650310

    Article  CAS  PubMed  Google Scholar 

  103. Pulendran B, Li S, Nakaya HI (2010) Systems vaccinology. Immunity 33:516–529. doi:10.1016/j.immuni.2010.10.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Nakaya HI, Pulendran B (2012) Systems vaccinology: its promise and challenge for HIV vaccine development. Curr Opin HIV AIDS 7:24–31. doi:10.1097/COH.0b013e32834dc37b

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Zhang B, Li M, McDonald T et al (2013) Microenvironmental protection of CML stem and progenitor cells from tyrosine kinase inhibitors through N-cadherin and Wnt–β-catenin signaling. Blood 121:1824–1838. doi:10.1182/blood-2012-02-412890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Gustafson MP, Lin Y, LaPlant B et al (2013) Immune monitoring using the predictive power of immune profiles. J Immunother Cancer 1:7. doi:10.1186/2051-1426-1-7

    Article  PubMed Central  PubMed  Google Scholar 

  107. Ulloa-Montoya F, Louahed J, Dizier B et al (2013) Predictive gene signature in MAGE-A3 antigen-specific cancer immunotherapy. J Clin Oncol 31(19):2388–2395. doi:10.1200/JCO.2012.44.3762

    Article  CAS  PubMed  Google Scholar 

  108. Consortium THMP (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214. doi:10.1038/nature11234

    Article  CAS  Google Scholar 

  109. Arthur JC, Perez-Chanona E, Mühlbauer M et al (2012) Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338:120–123. doi:10.1126/science.1224820

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Koziel J, Maciag-Gudowska A, Mikolajczyk T et al (2009) Phagocytosis of Staphylococcus aureus by macrophages exerts cytoprotective effects manifested by the upregulation of antiapoptotic factors. PLoS ONE 4:e5210. doi:10.1371/journal.pone.0005210

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  111. Favila MA, Geraci NS, Zeng E et al (2014) Human dendritic cells exhibit a pronounced type I IFN signature following leishmania major infection that is required for IL-12 induction. J Immunol 192:5863–5872. doi:10.4049/jimmunol.1203230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. White JH (2008) Vitamin D signaling, infectious diseases, and regulation of innate immunity. Infect Immun 76:3837–3843. doi:10.1128/IAI.00353-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Verway M, Bouttier M, Wang T-T et al (2013) Vitamin D induces interleukin-1β expression: paracrine macrophage epithelial signaling controls M. tuberculosis infection. PLoS Pathog 9, e1003407. doi:10.1371/journal.ppat.1003407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Franco M, Shastri AJ, Boothroyd JC (2014) Infection by Toxoplasma gondii specifically induces host c-Myc and the genes this pivotal transcription factor regulates. Eukaryot Cell 13:483–493. doi:10.1128/EC.00316-13

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  115. Huang J, Sun Z, Yan W et al (2014) Identification of MicroRNA as sepsis biomarker based on miRNAs regulatory network analysis. Biomed Res Int 2014:e594350. doi:10.1155/2014/594350

    Google Scholar 

  116. Vera J, Wolkenhauer O (2011) Mathematical tools in cancer signalling systems biology. Cancer Syst Biol Bioinforma Med 185–212. doi: 10.1007/978-94-007-1567-7_7

    Google Scholar 

  117. Chan C, Stark J, George AJT (2004) Feedback control of T-cell receptor activation. Proc Biol Sci 271:931–939. doi:10.1098/rspb.2003.2587

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  118. Altan-Bonnet G, Germain RN (2005) Modeling T cell antigen discrimination based on feedback control of digital ERK responses. PLoS Biol 3:e356. doi:10.1371/journal.pbio.0030356

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  119. Feinerman O, Veiga J, Dorfman JR et al (2008) Variability and robustness in T cell activation from regulated heterogeneity in protein levels. Science 321:1081–1084. doi:10.1126/science.1158013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  120. Das J, Ho M, Zikherman J et al (2009) Digital signaling and hysteresis characterize ras activation in lymphoid cells. Cell 136:337–351. doi:10.1016/j.cell.2008.11.051

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Chakraborty AK, Das J, Zikherman J, et al. (2009) Molecular origin and functional consequences of digital signaling and hysteresis during Ras activation in lymphocytes. Sci Signal 2: pt2. doi: 10.1126/scisignal.266pt2

    Google Scholar 

  122. Hong T, Xing J, Li L, Tyson JJ (2012) A simple theoretical framework for understanding heterogeneous differentiation of CD4+ T cells. BMC Syst Biol 6:66. doi:10.1186/1752-0509-6-66

    Article  PubMed Central  PubMed  Google Scholar 

  123. François P, Voisinne G, Siggia ED et al (2013) Phenotypic model for early T-cell activation displaying sensitivity, specificity, and antagonism. Proc Natl Acad Sci U S A 110:E888–E897. doi:10.1073/pnas.1300752110

    Article  PubMed Central  PubMed  Google Scholar 

  124. Mukhopadhyay H, Cordoba S-P, Maini PK et al (2013) Systems model of T cell receptor proximal signaling reveals emergent ultrasensitivity. PLoS Comput Biol 9:e1003004. doi:10.1371/journal.pcbi.1003004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Chylek LA, Akimov V, Dengjel J et al (2014) Phosphorylation site dynamics of early T-cell receptor signaling. PLoS One 9:e104240. doi:10.1371/journal.pone.0104240

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  126. Shahaf G, Allman D, Cancro MP, Mehr R (2004) Screening of alternative models for transitional B cell maturation. Int Immunol 16:1081–1090. doi:10.1093/intimm/dxh109

    Article  CAS  PubMed  Google Scholar 

  127. Shahaf G, Johnson K, Mehr R (2006) B cell development in aging mice: lessons from mathematical modeling. Int Immunol 18:31–39. doi:10.1093/intimm/dxh346

    Article  CAS  PubMed  Google Scholar 

  128. Shahaf G, Cancro MP, Mehr R (2010) Kinetic modeling reveals a common death niche for newly formed and mature B cells. PLoS One 5:e9497. doi:10.1371/journal.pone.0009497

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  129. Sciammas R, Li Y, Warmflash A et al (2011) An incoherent regulatory network architecture that orchestrates B cell diversification in response to antigen signaling. Mol Syst Biol 7:495. doi:10.1038/msb.2011.25

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  130. Duffy KR, Wellard CJ, Markham JF et al (2012) Activation-induced B cell fates are selected by intracellular stochastic competition. Science 335:338–341. doi:10.1126/science.1213230

    Article  CAS  PubMed  Google Scholar 

  131. Beltman JB, Allen CDC, Cyster JG, de Boer RJ (2011) B cells within germinal centers migrate preferentially from dark to light zone. Proc Natl Acad Sci U S A 108:8755–8760. doi:10.1073/pnas.1101554108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  132. Meyer-Hermann M, Figge MT, Toellner K-M (2009) Germinal centres seen through the mathematical eye: B-cell models on the catwalk. Trends Immunol 30:157–164. doi:10.1016/j.it.2009.01.005

    Article  CAS  PubMed  Google Scholar 

  133. Meyer-Hermann M, Mohr E, Pelletier N et al (2012) A theory of germinal center B cell selection, division, and exit. Cell Rep 2:162–174. doi:10.1016/j.celrep.2012.05.010

    Article  CAS  PubMed  Google Scholar 

  134. Watzl C, Sternberg-Simon M, Urlaub D, Mehr R (2012) Understanding natural killer cell regulation by mathematical approaches. Front Immunol 3:359. doi:10.3389/fimmu.2012.00359

    Article  PubMed Central  PubMed  Google Scholar 

  135. Kaplan A, Kotzer S, Almeida CR et al (2011) Simulations of the NK cell immune synapse reveal that activation thresholds can be established by inhibitory receptors acting locally. J Immunol 187:760–773. doi:10.4049/jimmunol.1002208

    Article  CAS  PubMed  Google Scholar 

  136. Almeida CR, Ashkenazi A, Shahaf G et al (2011) Human NK cells differ more in their KIR2DL1-dependent thresholds for HLA-Cw6-mediated inhibition than in their maximal killing capacity. PLoS One 6:e24927. doi:10.1371/journal.pone.0024927

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  137. Mesecke S, Urlaub D, Busch H et al (2011) Integration of activating and inhibitory receptor signaling by regulated phosphorylation of Vav1 in immune cells. Sci Signal 4:ra36. doi:10.1126/scisignal.2001325

    Article  PubMed  Google Scholar 

  138. Yates A, Bergmann C, Van Hemmen JL et al (2000) Cytokine-modulated regulation of helper T cell populations. J Theor Biol 206:539–560. doi:10.1006/jtbi.2000.2147

    Article  CAS  PubMed  Google Scholar 

  139. Höfer T, Nathansen H, Löhning M et al (2002) GATA-3 transcriptional imprinting in Th2 lymphocytes: a mathematical model. Proc Natl Acad Sci U S A 99:9364–9368. doi:10.1073/pnas.142284699

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  140. Yates A, Callard R, Stark J (2004) Combining cytokine signalling with T-bet and GATA-3 regulation in Th1 and Th2 differentiation: a model for cellular decision-making. J Theor Biol 231:181–196. doi:10.1016/j.jtbi.2004.06.013

    Article  CAS  PubMed  Google Scholar 

  141. Busse D, de la Rosa M, Hobiger K et al (2010) Competing feedback loops shape IL-2 signaling between helper and regulatory T lymphocytes in cellular microenvironments. Proc Natl Acad Sci U S A 107:3058–3063. doi:10.1073/pnas.0812851107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  142. Feinerman O, Jentsch G, Tkach KE et al (2010) Single-cell quantification of IL-2 response by effector and regulatory T cells reveals critical plasticity in immune response. Mol Syst Biol 6:437. doi:10.1038/msb.2010.90

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Beyer T, Busse M, Hristov K et al (2011) Integrating signals from the T-cell receptor and the interleukin-2 receptor. PLoS Comput Biol 7:e1002121. doi:10.1371/journal.pcbi.1002121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  144. Khailaie S, Bahrami F, Janahmadi M et al (2013) A mathematical model of immune activation with a unified self-nonself concept. Front Immunol 4:474. doi:10.3389/fimmu.2013.00474

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  145. Tkach KE, Barik D, Voisinne G et al (2014) T cells translate individual, quantal activation into collective, analog cytokine responses via time-integrated feedbacks. eLife 3:e01944. doi:10.7554/eLife.01944

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  146. Reynolds J, Coles M, Lythe G, Molina-París C (2013) Mathematical model of naive T cell division and survival IL-7 thresholds. Front Immunol 4:434. doi:10.3389/fimmu.2013.00434

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  147. Hapuarachchi T, Lewis J, Callard RE (2013) A mechanistic model for naive CD4 T cell homeostasis in healthy adults and children. Front Immunol 4:366. doi:10.3389/fimmu.2013.00366

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  148. Thiébaut R, Drylewicz J, Prague M et al (2014) Quantifying and predicting the effect of exogenous interleukin-7 on CD4+ T cells in HIV-1 infection. PLoS Comput Biol 10:e1003630. doi:10.1371/journal.pcbi.1003630

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  149. Owen MR, Sherratt JA (1997) Pattern formation and spatiotemporal irregularity in a model for macrophage-tumour interactions. J Theor Biol 189:63–80. doi:10.1006/jtbi.1997.0494

    Article  CAS  PubMed  Google Scholar 

  150. Matzavinos A, Chaplain MAJ, Kuznetsov VA (2004) Mathematical modelling of the spatio-temporal response of cytotoxic T-lymphocytes to a solid tumour. Math Med Biol 21:1–34. doi:10.1093/imammb/21.1.1

    Article  PubMed  Google Scholar 

  151. Kim PS, Lee PP (2012) Modeling protective anti-tumor immunity via preventative cancer vaccines using a hybrid agent-based and delay differential equation approach. PLoS Comput Biol 8:e1002742. doi:10.1371/journal.pcbi.1002742

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  152. De Pillis LG, Gu W, Radunskaya AE (2006) Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations. J Theor Biol 238:841–862. doi:10.1016/j.jtbi.2005.06.037

    Article  PubMed  CAS  Google Scholar 

  153. Depillis L, Gallegos A, Radunskaya A (2013) A model of dendritic cell therapy for melanoma. Front Oncol 3:56. doi:10.3389/fonc.2013.00056

    Article  PubMed Central  PubMed  Google Scholar 

  154. Joshi B, Wang X, Banerjee S et al (2009) On immunotherapies and cancer vaccination protocols: a mathematical modelling approach. J Theor Biol 259:820–827. doi:10.1016/j.jtbi.2009.05.001

    Article  PubMed  Google Scholar 

  155. Kogan Y, Halevi-Tobias K, Elishmereni M et al (2012) Reconsidering the paradigm of cancer immunotherapy by computationally aided real-time personalization. Cancer Res 72:2218–2227. doi:10.1158/0008-5472.CAN-11-4166

    Article  CAS  PubMed  Google Scholar 

  156. Wilson S, Levy D (2012) A mathematical model of the enhancement of tumor vaccine efficacy by immunotherapy. Bull Math Biol 74:1485–1500. doi:10.1007/s11538-012-9722-4

    Article  CAS  PubMed  Google Scholar 

  157. Glauche I, Horn K, Horn M et al (2012) Therapy of chronic myeloid leukaemia can benefit from the activation of stem cells: simulation studies of different treatment combinations. Br J Cancer 106:1742–1752. doi:10.1038/bjc.2012.142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  158. Parra-Guillen ZP, Berraondo P, Grenier E et al (2013) Mathematical model approach to describe tumour response in mice after vaccine administration and its applicability to immune-stimulatory cytokine-based strategies. AAPS J 15:797–807. doi:10.1208/s12248-013-9483-5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  159. Ciupe SM, Ribeiro RM, Nelson PW, Perelson AS (2007) Modeling the mechanisms of acute hepatitis B virus infection. J Theor Biol 247:23–35. doi:10.1016/j.jtbi.2007.02.017

    Article  PubMed Central  PubMed  Google Scholar 

  160. Binder M, Sulaimanov N, Clausznitzer D et al (2013) Replication vesicles are load- and choke-points in the hepatitis C virus lifecycle. PLoS Pathog 9:e1003561. doi:10.1371/journal.ppat.1003561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  161. Althaus CL, De Boer RJ (2008) Dynamics of immune escape during HIV/SIV infection. PLoS Comput Biol 4:e1000103. doi:10.1371/journal.pcbi.1000103

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  162. Lee HY, Topham DJ, Park SY et al (2009) Simulation and prediction of the adaptive immune response to influenza A virus infection. J Virol 83:7151–7165. doi:10.1128/JVI.00098-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  163. Wu H, Kumar A, Miao H et al (2011) Modeling of influenza-specific CD8+ T cells during the primary response indicates that the spleen is a major source of effectors. J Immunol 187:4474–4482. doi:10.4049/jimmunol.1101443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  164. Wilson DP, Timms P, McElwain DLS (2003) A mathematical model for the investigation of the Th1 immune response to Chlamydia trachomatis. Math Biosci 182:27–44

    Article  CAS  PubMed  Google Scholar 

  165. Vickers DM, Zhang Q, Osgood ND (2009) Immunobiological outcomes of repeated chlamydial infection from two models of within-host population dynamics. PLoS One 4:e6886. doi:10.1371/journal.pone.0006886

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  166. Mallet DG, Bagher-Oskouei M, Farr AC et al (2013) A mathematical model of chlamydial infection incorporating movement of chlamydial particles. Bull Math Biol 75:2257–2270. doi:10.1007/s11538-013-9891-9

    Article  PubMed  Google Scholar 

  167. Go N, Bidot C, Belloc C, Touzeau S (2014) Integrative model of the immune response to a pulmonary macrophage infection: what determines the infection duration? PLoS One 9:e107818. doi:10.1371/journal.pone.0107818

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  168. Marino S, Kirschner DE (2004) The human immune response to Mycobacterium tuberculosis in lung and lymph node. J Theor Biol 227:463–486. doi:10.1016/j.jtbi.2003.11.023

    Article  CAS  PubMed  Google Scholar 

  169. Raman K, Bhat AG, Chandra N (2010) A systems perspective of host–pathogen interactions: predicting disease outcome in tuberculosis. Mol Biosyst 6:516–530. doi:10.1039/b912129c

    Article  CAS  PubMed  Google Scholar 

  170. Carbo A, Olivares-Villagómez D, Hontecillas R et al (2014) Systems modeling of the role of interleukin-21 in the maintenance of effector CD4+ T cell responses during chronic Helicobacter pylori infection. mBio 5:01243–01214. doi:10.1128/mBio.01243-14

    Article  CAS  Google Scholar 

  171. Bocharov G, Züst R, Cervantes-Barragan L et al (2010) A systems immunology approach to plasmacytoid dendritic cell function in cytopathic virus infections. PLoS Pathog 6:e1001017. doi:10.1371/journal.ppat.1001017

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  172. Palsson S, Hickling TP, Bradshaw-Pierce EL et al (2013) The development of a fully-integrated immune response model (FIRM) simulator of the immune response through integration of multiple subset models. BMC Syst Biol 7:95. doi:10.1186/1752-0509-7-95

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  173. Fallahi-Sichani M, Schaller MA, Kirschner DE et al (2010) Identification of key processes that control tumor necrosis factor availability in a tuberculosis granuloma. PLoS Comput Biol 6:e1000778. doi:10.1371/journal.pcbi.1000778

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  174. Fallahi-Sichani M, El-Kebir M, Marino S et al (2011) Multiscale computational modeling reveals a critical role for TNF-α receptor 1 dynamics in tuberculosis granuloma formation. J Immunol 186:3472–3483. doi:10.4049/jimmunol.1003299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  175. Cilfone NA, Perry CR, Kirschner DE, Linderman JJ (2013) Multi-scale modeling predicts a balance of tumor necrosis factor-α and interleukin-10 controls the granuloma environment during Mycobacterium tuberculosis infection. PLoS One 8:e68680. doi:10.1371/journal.pone.0068680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  176. Paiva LR, Silva HS, Ferreira SC, Martins ML (2013) Multiscale model for the effects of adaptive immunity suppression on the viral therapy of cancer. Phys Biol 10:025005. doi:10.1088/1478-3975/10/2/025005

    Article  PubMed  CAS  Google Scholar 

  177. Dwivedi G, Fitz L, Hegen M et al (2014) A multiscale model of interleukin-6-mediated immune regulation in Crohn’s disease and its application in drug discovery and development. CPT Pharmacometrics Syst Pharmacol 3:e89. doi:10.1038/psp.2013.64

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  178. Sedegah M, Kim Y, Peters B et al (2010) Identification and localization of minimal MHC-restricted CD8+ T cell epitopes within the Plasmodium falciparum AMA1 protein. Malar J 9:241. doi:10.1186/1475-2875-9-241

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  179. Haste Andersen P, Nielsen M, Lund O (2006) Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci 15:2558–2567. doi:10.1110/ps.062405906

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  180. Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15:221–231. doi:10.1016/s0955-0674(03)00017-6

    Article  CAS  PubMed  Google Scholar 

  181. Lev Bar-Or R, Maya R, Segel LA et al (2000) Generation of oscillations by the p53-Mdm2 feedback loop: a theoretical and experimental study. Proc Natl Acad Sci 97:11250–11255. doi:10.1073/pnas.210171597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  182. Vera J, Schultz J, Ibrahim S et al (2009) Dynamical effects of epigenetic silencing of 14-3-3σ expression. Mol BioSyst 6:264. doi:10.1039/b907863k

    Article  PubMed  Google Scholar 

  183. Liu Y, Liu W, Hu C et al (2011) MiR-17 modulates osteogenic differentiation through a coherent feed-forward loop in mesenchymal stem cells isolated from periodontal ligaments of patients with periodontitis. Stem Cells 29:1804–1816. doi:10.1002/stem.728

    Article  CAS  PubMed  Google Scholar 

  184. Nelson DE, Ihekwaba AEC, Elliott M et al (2004) Oscillations in NF-kappaB signaling control the dynamics of gene expression. Science 306:704–708. doi:10.1126/science.1099962

    Article  CAS  PubMed  Google Scholar 

  185. Luu K, Greenhill CJ, Majoros A et al (2014) STAT1 plays a role in TLR signal transduction and inflammatory responses. Immunol Cell Biol 92:761–769. doi:10.1038/icb.2014.51

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Federal Ministry of Education and Research (BMBF) as part of the projects eBio:miRSys [0316175A to J.V. and B.S.], and eMed:CAPSyS [01ZX1304F to J.V. and B.S.]. Julio Vera is funded by the Erlangen University Hospital (ELAN funds, 14-07-22-1-Vera-González) and the German Research Foundation (DFG) through the project SPP 1757/1 (VE 642/1-1 to J.V.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Vera .

Editor information

Editors and Affiliations

Glossary

Normalization in differential gene expression analysis 

Analyses almost always combine measurements from multiple microarray chips or NGS runs which will differ in parameters that dictate background strength and signal ranges for each particular feature. To make those measurements comparable with each other, inter-measurement normalization techniques have been developed. The most widely employed is probably quantile normalization, an algorithm that orders features by their expression value separately for each sample, averages the expression for each rank across all samples, and redistributes the averages to the original feature position in each sample. In many software tools, the “normalization” step offers additional computations, often including the transformation into the logarithmic scale (see below).

(Log-)transformation 

The distribution of signal values in a sample covers several orders of magnitude. Usually, very low or undetectable (i.e., zero) signals are highly overrepresented while a few signals are found as upper outliers, and both skew the gross signal distribution. To remedy this and make the distribution more malleable to established methods of statistical testing, a simple option is transforming the data into log scale. Although the base of the logarithm is an arbitrary choice, base 2 is used in many software tools to make fold-change calculations more intuitive.

Moderation 

In nontechnical terms, moderation is a statistical method that manipulates a distribution in a way that is conceived to yield better results. In the case of microarrays, moderation can be used to decrease the relative difference in feature variances so that the conditions for further statistical tests are (better) met.

False discovery rate (FDR) 

The FDR is the fraction of falsely called features in a set of called features. For example, if differential expression analysis yields a list of 100 called features but only 90 of them can be validated experimentally, the empiric FDR is 10 %.

Correction for multiple testing/control of the FDR 

For a differential expression analysis on a set of 50,000 features, 50,000 tests must be performed. At a significance level of 0.05, we expect 2500 of those test results to be true just by chance. Such a large number of false positives will drown out the true positive features with no direct way to distinguish between both. There are ways for dealing with this unfortunate consequence by adjusting the test scenario in such a way that the proportion of falsely called features in the results is statistically limited (“controlled”).

Correlation network 

A network that is based on—and perhaps spatially arranged according to—the correlation values between its nodes.

ODE model 

A system of mechanistic ordinary differential equations that determine the temporal state of the corresponding system of biochemical reactions.

PDE model 

A system of partial differential equations is a quantitative description of how a biochemical system changes in space and time.

Agent-based model 

Agent-based modeling is a rule-based, discrete-event, and discrete-time computational modeling methodology that employs abstract objects and focuses on the interactions among the individual objects (i.e., agents) of a system.

Boolean model 

A Boolean network consists of a set of nodes whose state (0 or 1) is determined by linking other nodes in the network through Boolean functions, such as AND and OR.

Deterministic model 

A dynamic system is deterministic if its trajectory is uniquely determined by the initial state and a given parameter set.

Stochastic model 

In contrast to deterministic models, for which the output will be identical using the same initial state and parameter set as the input, a stochastic system, at a given initial state in the phase space, can end with different states with different probabilities. In other words, the same input given to a stochastic system several times can result in different outputs.

Sensitivity analysis 

Determining the change in model variables (such as concentrations of molecular species) influenced by changes in parameter values (such as velocities of biochemical reactions).

Bifurcation analysis 

An analysis that shows how the qualitative behavior (e.g., the loss of stability and appearance of sustained oscillations) of a model changes as a function of critical model parameters.

Bistability 

For a certain set of parameters, a system has two stable steady states that are separated by an unstable steady state.

Hysteresis 

A hallmark of bistability: as a critical parameter (i.e., bifurcation parameter) increases beyond a particular value, the system jumps to an alternative steady state from the original steady state; then, if the parameter decreases below the value, the system jumps back to the original steady state.

In silico

An expression used to mean “performed” on a computer or via computer simulation.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Eberhardt, M. et al. (2016). Third-Kind Encounters in Biomedicine: Immunology Meets Mathematics and Informatics to Become Quantitative and Predictive. In: Schmitz, U., Wolkenhauer, O. (eds) Systems Medicine. Methods in Molecular Biology, vol 1386. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3283-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3283-2_9

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3282-5

  • Online ISBN: 978-1-4939-3283-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics