Skip to main content

Computational Modeling of Human Metabolism and Its Application to Systems Biomedicine

  • Protocol
Book cover Systems Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1386))

Abstract

Modern high-throughput techniques offer immense opportunities to investigate whole-systems behavior, such as those underlying human diseases. However, the complexity of the data presents challenges in interpretation, and new avenues are needed to address the complexity of both diseases and data. Constraint-based modeling is one formalism applied in systems biology. It relies on a genome-scale reconstruction that captures extensive biochemical knowledge regarding an organism. The human genome-scale metabolic reconstruction is increasingly used to understand normal cellular and disease states because metabolism is an important factor in many human diseases. The application of human genome-scale reconstruction ranges from mere querying of the model as a knowledge base to studies that take advantage of the model’s topology and, most notably, to functional predictions based on cell- and condition-specific metabolic models built based on omics data.

An increasing number and diversity of biomedical questions are being addressed using constraint-based modeling and metabolic models. One of the most successful biomedical applications to date is cancer metabolism, but constraint-based modeling also holds great potential for inborn errors of metabolism or obesity. In addition, it offers great prospects for individualized approaches to diagnostics and the design of disease prevention and intervention strategies. Metabolic models support this endeavor by providing easy access to complex high-throughput datasets. Personalized metabolic models have been introduced. Finally, constraint-based modeling can be used to model whole-body metabolism, which will enable the elucidation of metabolic interactions between organs and disturbances of these interactions as either causes or consequence of metabolic diseases. This chapter introduces constraint-based modeling and describes some of its contributions to systems biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kitano H (2001) Foundations of systems biology. MIT Press, Cambridge, MA

    Google Scholar 

  2. Machado D, Costa R, Rocha M et al (2011) Modeling formalisms in systems biology. AMB Express 1:45

    Article  PubMed Central  PubMed  Google Scholar 

  3. Durot M, Bourguignon PY, Schachter V (2009) Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol Rev 33:164–190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Palsson BØ (2006) Systems biology: properties of reconstructed networks. Cambridge University Press, Cambridge

    Book  Google Scholar 

  5. Aurich MK, Thiele I (2012) Contextualization procedure and modeling of monocyte specific TLR signaling. PLoS One 7:e49978

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Li F, Thiele I, Jamshidi N, Palsson BØ (2009) Identification of potential pathway mediation targets in toll-like receptor signaling. PLoS Comput Biol 5:e1000292

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Papin JA, Palsson BØ (2004) The JAK-STAT signaling network in the human B-cell: an extreme signaling pathway analysis. Biophys J 87:37–46

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Thiele I, Jamshidi N, Fleming RMT et al (2009) Genome-scale reconstruction of Escherichia coli’s transcriptional and translational machinery: a knowledge base, its mathematical formulation, and its functional characterization. PLoS Comput Biol 5:e1000312

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Thorleifsson SG, Thiele I (2011) rBioNet: a COBRA toolbox extension for reconstructing high-quality biochemical networks. Bioinformatics 27:2009–2010

    Article  CAS  PubMed  Google Scholar 

  10. Schellenberger J, Que R, Fleming RMT et al (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6:1290–1307

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Thiele I, Palsson BØ (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5:93–121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Reed JL, Famili I, Thiele I et al (2006) Towards multidimensional genome annotation. Nat Rev Genet 7:130–141

    Article  CAS  PubMed  Google Scholar 

  13. Sahoo S, Thiele I (2013) Predicting the impact of diet and enzymopathies on human small intestinal epithelial cells. Hum Mol Genet 22:2705–2722

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Folger O, Jerby L, Frezza C et al (2011) Predicting selective drug targets in cancer through metabolic networks. Mol Syst Biol 7:501

    Article  PubMed Central  PubMed  Google Scholar 

  15. Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotech 28:245–248

    Article  CAS  Google Scholar 

  16. Varma A, Palsson BØ (1994) Metabolic flux balancing: basic concepts, scientific and practical use. Nat Biotech 12:994–998

    Article  CAS  Google Scholar 

  17. Terzer M, Maynard ND, Covert MW et al (2009) Genome-scale metabolic networks. Wiley Interdiscip Rev Syst Biol Med 1:285–297

    Article  CAS  PubMed  Google Scholar 

  18. Aurich M, Paglia G, Rolfsson Ó et al (2015) Prediction of intracellular metabolic states from extracellular metabolomic data. Metabolomics 11:603–619

    Google Scholar 

  19. Lewis NE, Nagarajan H, Palsson BØ (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol 10:291–305

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Savinell JM, Palsson BØ (1992) Network analysis of intermediary metabolism using linear optimization. I. Development of mathematical formalism. J Theor Biol 154:421–454

    Article  CAS  PubMed  Google Scholar 

  21. Vo TD, Greenberg HJ, Palsson BØ (2004) Reconstruction and functional characterization of the human mitochondrial metabolic network based on proteomic and biochemical data. J Biol Chem 279:39532–39540

    Article  CAS  PubMed  Google Scholar 

  22. Feist AM, Palsson BØ (2010) The biomass objective function. Curr Opin Microbiol 1:344–349

    Article  CAS  Google Scholar 

  23. Hernández Patiño CE, Jaime-Muñoz G, Resendis-Antonio O (2013) Systems biology of cancer: moving toward the integrative study of the metabolic alterations in cancer cells. Front Physiol 3:481

    Article  PubMed Central  PubMed  Google Scholar 

  24. Duarte NC, Becker SA, Jamshidi N et al (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. PNAS 104:1777–1782

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Thiele I, Swainston N, Fleming RMT et al (2013) A community-driven global reconstruction of human metabolism. Nat Biotechnol 31:419–425

    Article  CAS  PubMed  Google Scholar 

  26. Bordbar A, Feist AM, Usaite-Black R et al (2011) A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology. BMC Syst Biol 5:180

    Article  PubMed Central  PubMed  Google Scholar 

  27. Thiele I, Price ND, Vo TD et al (2005) Candidate metabolic network states in human mitochondria. Impact of diabetes, ischemia, and diet. J Biol Chem 280:11683–11695

    Article  CAS  PubMed  Google Scholar 

  28. Bordel S, Agren R, Nielsen J (2010) Sampling the solution space in genome-scale metabolic networks reveals transcriptional regulation in key enzymes. PLoS Comput Biol 6:e1000859

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Lewis NE, Jamshidi N, Thiele I et al (2009) Metabolic systems biology: a constraint-based approach. In: Encyclopedia of complexity and system science. Chapter 329, 5535-5552, Springer, New York, ISBN 978-0-387-75888-6

    Google Scholar 

  30. Bordbar A, Lewis NE, Schellenberger J et al (2010) Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions. Mol Syst Biol 6:422

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5:264–276

    Article  CAS  PubMed  Google Scholar 

  32. Gudmundsson S, Thiele I (2010) Computationally efficient flux variability analysis. BMC Bioinformatics 11:489

    Article  PubMed Central  PubMed  Google Scholar 

  33. Schellenberger J, Palsson BØ (2009) Use of randomized sampling for analysis of metabolic networks. J Biol Chem 284:5457–5461

    Article  CAS  PubMed  Google Scholar 

  34. Kaufman DE, Smith RL (1998) Direction choice for accelerated convergence in hit-and-run sampling. Oper Res 46:84–95

    Article  Google Scholar 

  35. Becker SA, Palsson BØ (2008) Context-specific metabolic networks are consistent with experiments. PLoS Comput Biol 4:e1000082

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Jerby L, Ruppin E (2012) Predicting drug targets and biomarkers of cancer via genome-scale metabolic modeling. Clin Cancer Res 18:5572–5584

    Article  CAS  PubMed  Google Scholar 

  37. Lewis NE, Schramm G, Bordbar A et al (2010) Large-scale in silico modeling of metabolic interactions between cell types in the human brain. Nat Biotechnol 28:1279–1285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Bordbar A, Palsson BØ (2012) Using the reconstructed genome-scale human metabolic network to study physiology and pathology. J Intern Med 271:131–141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Shlomi T, Cabili MN, Ruppin E (2009) Predicting metabolic biomarkers of human inborn errors of metabolism. Mol Syst Biol 5:263

    Article  PubMed Central  PubMed  Google Scholar 

  40. Rolfsson O, Palsson BØ, Thiele I (2011) The human metabolic reconstruction Recon 1 directs hypotheses of novel human metabolic functions. BMC Syst Biol 5:155

    Article  PubMed Central  PubMed  Google Scholar 

  41. Heinken A, Thiele I (2015) Systematic prediction of health-relevant human-microbial co-metabolism through a computational framework. Gut Microbes. doi:10.1080/19490976.2015.1023494

    PubMed  Google Scholar 

  42. Heinken A, Sahoo S, Fleming RMT et al (2013) Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut. Gut Microbes 4:28–40

    Article  PubMed Central  PubMed  Google Scholar 

  43. Ma H, Sorokin A, Mazein A et al (2007) The Edinburgh human metabolic network reconstruction and its functional analysis. Mol Syst Biol 3:135

    Article  PubMed Central  PubMed  Google Scholar 

  44. Hao T, Ma HW, Zhao XM et al (2010) Compartmentalization of the Edinburgh human metabolic network. BMC Bioinformatics 11:393

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Gille C, Bolling C, Hoppe A et al (2010) HepatoNet1: a comprehensive metabolic reconstruction of the human hepatocyte for the analysis of liver physiology. Mol Syst Biol 6:411

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Mardinoglu A, Agren R, Kampf C et al (2014) Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat Commun 5:3083

    Article  PubMed  CAS  Google Scholar 

  47. Agren R, Bordel S, Mardinoglu A et al (2012) Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput Biol 8:e1002518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Agren R, Liu L, Shoaie S et al (2013) The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLoS Comput Biol 9:e1002980

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Agren R, Mardinoglu A, Asplund A et al (2014) Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling. Mol Syst Biol 10:721

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Mardinoglu A, Agren R, Kampf C et al (2013) Integration of clinical data with a genome-scale metabolic model of the human adipocyte. Mol Syst Biol 9:649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Sahoo S, Franzson L, Jonsson JJ et al (2012) A compendium of inborn errors of metabolism mapped onto the human metabolic network. Mol Biosyst 8:2545–2558

    Article  CAS  PubMed  Google Scholar 

  52. Jain M, Nilsson R, Sharma S et al (2012) Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336:1040–1044

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Uhlen M, Oksvold P, Fagerberg L et al (2010) Towards a knowledge-based human protein atlas. Nat Biotech 28:1248–1250

    Article  CAS  Google Scholar 

  54. Orth JD, Palsson B (2012) Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions. BMC Syst Biol 6:30

    Article  PubMed Central  PubMed  Google Scholar 

  55. Thiele I, Vlassis N, Fleming RMT (2014) fastGapFill: efficient gap filling in metabolic networks. Bioinformatics 30:2529–2531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Wishart DS, Knox C, Guo AC et al (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37:D603–D610

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Sahoo S, Aurich MK, Jonsson JJ et al (2014) Membrane transporters in a human genome-scale metabolic knowledgebase and their implications for disease. Front Physiol 5:91

    Article  PubMed Central  PubMed  Google Scholar 

  58. Sahoo S, Haraldsdottir HS, Fleming RMT et al (2014) Modeling the effects of commonly used drugs on human metabolism. FEBS J 282:297–317

    Article  PubMed  CAS  Google Scholar 

  59. Colijn C, Brandes A, Zucker J et al (2009) Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production. PLoS Comput Biol 5:e1000489

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Cox J, Mann M (2007) Is proteomics the new genomics? Cell 130:395–398

    Article  CAS  PubMed  Google Scholar 

  61. Gatto F, Nookaew I, Nielsen J (2014) Chromosome 3p loss of heterozygosity is associated with a unique metabolic network in clear cell renal carcinoma. PNAS 111:E866–E875

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Jamshidi N, Palsson BØ (2006) Systems biology of SNPs. Mol Syst Biol 2:38

    Article  PubMed Central  PubMed  Google Scholar 

  63. Reed JL (2012) Shrinking the metabolic solution space using experimental datasets. PLoS Comput Biol 8:e1002662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Mo ML, Palsson BØ, Herrgard MJ (2009) Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst Biol 3:37

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Shlomi T, Cabili MN, Herrgard MJ et al (2008) Network-based prediction of human tissue-specific metabolism. Nat Biotechnol 26:1003–1010

    Article  CAS  PubMed  Google Scholar 

  66. Zhao Y, Huang J (2011) Reconstruction and analysis of human heart-specific metabolic network based on transcriptome and proteome data. Biochem Biophys Res Commun 415:450–454

    Article  CAS  PubMed  Google Scholar 

  67. Karlstadt A, Fliegner D, Kararigas G et al (2012) CardioNet: a human metabolic network suited for the study of cardiomyocyte metabolism. BMC Syst Biol 6:114

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Jerby L, Shlomi T, Ruppin E (2010) Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism. Mol Syst Biol 6:401

    Article  PubMed Central  PubMed  Google Scholar 

  69. Chang RL, Xie L, Xie L et al (2010) Drug off-target effects predicted using structural analysis in the context of a metabolic network model. PLoS Comput Biol 6:e1000938

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Bordbar A, Mo ML, Nakayasu ES et al (2012) Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation. Mol Syst Biol 8:558

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. Bordbar A, Jamshidi N, Palsson BØ (2011) iAB-RBC-283: a proteomically derived knowledge-base of erythrocyte metabolism that can be used to simulate its physiological and patho-physiological states. BMC Syst Biol 5:110

    Article  PubMed Central  PubMed  Google Scholar 

  72. Yizhak K, Gaude E, Le Devedec S et al (2014) Phenotype-based cell-specific metabolic modeling reveals metabolic liabilities of cancer. eLife 3:e03641

    Google Scholar 

  73. Wang Y, Eddy JA, Price ND (2012) Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE. BMC Syst Biol 6:153

    Article  PubMed Central  PubMed  Google Scholar 

  74. Blazier AS, Papin JA (2012) Integration of expression data in genome-scale metabolic network reconstructions. Front Physiol 3:299

    Article  PubMed Central  PubMed  Google Scholar 

  75. Shlomi T (2010) Metabolic network-based interpretation of gene expression data elucidates human cellular metabolism. Biotechnol Genet Eng Rev 26:281–296

    Article  CAS  PubMed  Google Scholar 

  76. Vlassis N, Pacheco MP, Sauter T (2014) Fast reconstruction of compact context-specific metabolic network models. PLoS Comput Biol 10:e1003424

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Antonucci R, Pilloni MD, Atzori L et al (2012) Pharmaceutical research and metabolomics in the newborn. J Matern Fetal Neonatal Med 25:22–26

    Article  CAS  PubMed  Google Scholar 

  78. Schmidt BJ, Ebrahim A, Metz TO et al (2013) GIM3E: condition-specific models of cellular metabolism developed from metabolomics and expression data. Bioinformatics 29:2900–2908

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Fleming RMT, Thiele I, Nasheuer HP (2009) Quantitative assignment of reaction directionality in constraint-based models of metabolism: application to Escherichia coli. Biophys Chem 145:47–56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Yizhak K, Benyamini T, Liebermeister W et al (2010) Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model. Bioinformatics 26:i255–i260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Kummel A, Panke S, Heinemann M (2006) Systematic assignment of thermodynamic constraints in metabolic network models. BMC Bioinformatics 7:512

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  82. Ahn SY, Jamshidi N, Mo ML et al (2011) Linkage of organic anion transporter-1 to metabolic pathways through integrated “omics”-driven network and functional analysis. J Biol Chem 286:31522–31531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Fan J, Kamphorst JJ, Mathew R et al (2013) Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol Syst Biol 9:712

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Cakir T, Patil KR, Onsan Z et al (2006) Integration of metabolome data with metabolic networks reveals reporter reactions. Mol Syst Biol 2:50

    Article  PubMed Central  PubMed  Google Scholar 

  85. Allen J, Davey HM, Broadhurst D et al (2004) Discrimination of modes of action of antifungal substances by use of metabolic footprinting. Appl Environ Microbiol 70:6157–6165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Allen J, Davey HM, Broadhurst D et al (2003) High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nat Biotechnol 21:692–696

    Article  CAS  PubMed  Google Scholar 

  87. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  88. Resendis-Antonio O, Checa A, Encarnacion S (2010) Modeling core metabolism in cancer cells: surveying the topology underlying the Warburg effect. PLoS One 5:e12383

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  89. Tedeschi PM, Markert EK, Gounder M et al (2013) Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells. Cell Death Dis 4:e877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Vazquez A, Markert EK, Oltvai ZN (2011) Serine biosynthesis with one carbon catabolism and the glycine cleavage system represents a novel pathway for ATP generation. PLoS One 6:e25881

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Frezza C, Zheng L, Folger O et al (2011) Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature 477:225–228

    Article  CAS  PubMed  Google Scholar 

  92. Jerby L, Wolf L, Denkert C et al (2012) Metabolic associations of reduced proliferation and oxidative stress in advanced breast cancer. Cancer Res 72:5712–5720

    Article  CAS  PubMed  Google Scholar 

  93. Shlomi T, Benyamini T, Gottlieb E et al (2011) Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing the Warburg effect. PLoS Comput Biol 7:e1002018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Bordbar A, Monk JM, King ZA et al (2014) Constraint-based models predict metabolic and associated cellular functions. Nat Rev Genet 15:107–120

    Article  CAS  PubMed  Google Scholar 

  95. Lewis NE, Abdel-Haleem AM (2013) The evolution of genome-scale models of cancer metabolism. Front Physiol 4:237

    PubMed Central  PubMed  Google Scholar 

  96. Masoudi-Nejad A, Asgari Y (2014) Metabolic cancer biology: structural-based analysis of cancer as a metabolic disease, new sights and opportunities for disease treatment. Semin Cancer Biol 30C:21–29

    Google Scholar 

  97. Vazquez A, Liu J, Zhou Y et al (2010) Catabolic efficiency of aerobic glycolysis: the Warburg effect revisited. BMC Syst Biol 4:58

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  98. Vazquez A, Oltvai ZN (2011) Molecular crowding defines a common origin for the Warburg effect in proliferating cells and the lactate threshold in muscle physiology. PLoS One 6:e19538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Pampols T (2010) Inherited metabolic rare disease. Adv Exp Med Biol 686:397–431

    Article  PubMed  Google Scholar 

  100. Levy HL (2010) Newborn screening conditions: what we know, what we do not know, and how we will know it. Genet Med 12:S213–S214

    Article  PubMed  Google Scholar 

  101. Seymour CA, Thomason MJ, Chalmers RA et al (1997) Newborn screening for inborn errors of metabolism: a systematic review. Health Technol Assess 1:84–95

    Google Scholar 

  102. Lanpher B, Brunetti-Pierri N, Lee B (2006) Inborn errors of metabolism: the flux from Mendelian to complex diseases. Nat Rev Genet 7:449–460

    Article  CAS  PubMed  Google Scholar 

  103. Vockley J (2008) Metabolism as a complex genetic trait, a systems biology approach: implications for inborn errors of metabolism and clinical diseases. J Inherit Metab Dis 31:619–629

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Fernandes J (2006) Inborn metabolic diseases: diagnosis and treatment, 4th edn. Springer, Heidelberg

    Book  Google Scholar 

  105. Becroft DM, Phillips LI (1965) Hereditary orotic aciduria and megaloblastic anaemia: a second case, with response to uridine. Br Med J 1:547–552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Becroft DM, Phillips LI, Simmonds A (1969) Hereditary orotic aciduria: long-term therapy with uridine and a trial of uracil. J Pediatr 75:885–891

    Article  CAS  PubMed  Google Scholar 

  107. Jamshidi N, Miller FJ, Mandel J et al (2011) Individualized therapy of HHT driven by network analysis of metabolomic profiles. BMC Syst Biol 5:200

    Article  PubMed Central  PubMed  Google Scholar 

  108. Bairoch A, Apweiler R, Wu CH et al (2005) The universal protein resource (UniProt). Nucleic Acids Res 33:D154–D159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Thiele I, Palsson BØ (2010) Reconstruction annotation jamborees: a community approach to systems biology. Mol Syst Biol 6:361

    Article  PubMed Central  PubMed  Google Scholar 

  110. Suhre K, Wallaschofski H, Raffler J et al (2011) A genome-wide association study of metabolic traits in human urine. Nat Genet 43:565–569

    Article  CAS  PubMed  Google Scholar 

  111. Krug S, Kastenmuller G, Stuckler F et al (2012) The dynamic range of the human metabolome revealed by challenges. FASEB J 26:2607–2619

    Article  CAS  PubMed  Google Scholar 

  112. Schuetz R, Kuepfer L, Sauer U (2007) Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 3:1–15

    Article  CAS  Google Scholar 

  113. Gianchandani EP, Oberhardt MA, Burgard AP et al (2008) Predicting biological system objectives de novo from internal state measurements. BMC Bioinformatics 9:43

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  114. Price ND, Schellenberger J, Palsson BØ (2004) Uniform sampling of steady-state flux spaces: means to design experiments and to interpret enzymopathies. Biophys J 87:2172–2186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Akesson M, Forster J, Nielsen J (2004) Integration of gene expression data into genome-scale metabolic models. Metab Eng 6:285–293

    Article  CAS  PubMed  Google Scholar 

  116. Zur H, Ruppin E, Shlomi T (2010) iMAT: an integrative metabolic analysis tool. Bioinformatics 26:3140–3142

    Article  CAS  PubMed  Google Scholar 

  117. Chandrasekaran S, Price ND (2010) Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. PNAS 107:17845–17850

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by an ATTRACT program grant (FNR/A12/01) from the Luxembourg National Research Fund (FNR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ines Thiele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Aurich, M.K., Thiele, I. (2016). Computational Modeling of Human Metabolism and Its Application to Systems Biomedicine. In: Schmitz, U., Wolkenhauer, O. (eds) Systems Medicine. Methods in Molecular Biology, vol 1386. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3283-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3283-2_12

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3282-5

  • Online ISBN: 978-1-4939-3283-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics