Advertisement

Fast and Slow Synaptic Currents

  • Nicholas GrazianeEmail author
  • Yan Dong
Part of the Neuromethods book series (NM, volume 112)

Abstract

There are different types of synapses and receptors that regulate fast and slow synaptic currents. This chapter discusses two classes of synapses (e.g., chemical and electrical) and the receptors that populate these synapses including ionotropic receptors, metabotropic receptors, and gap junctions. We discuss the speed with which these receptors mediate or regulate ionic currents with the purpose of supplying the reader with a general idea of current kinetics. In addition, we include technical considerations when measuring fast and slow synaptic currents as well as, in some cases, the physiological relevance of current kinetics (see Chap.  17 for more details regarding ionotropic receptor kinetics).

Key words

Chemical synapses Excitatory ionotropic currents Inhibitory ionotropic currents Metabotropic receptors Electrical synapses 

References

  1. 1.
    Clements JD (1996) Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends Neurosci 19(5):163–171CrossRefPubMedGoogle Scholar
  2. 2.
    Clements JD, Feltz A, Sahara Y, Westbrook GL (1998) Activation kinetics of AMPA receptor channels reveal the number of functional agonist binding sites. J Neurosci 18(1):119–127PubMedGoogle Scholar
  3. 3.
    Kiskin NI, Krishtal OA, Tsyndrenko A (1986) Excitatory amino acid receptors in hippocampal neurons: kainate fails to desensitize them. Neurosci Lett 63(3):225–230CrossRefPubMedGoogle Scholar
  4. 4.
    Nelson PG, Pun RY, Westbrook GL (1986) Synaptic excitation in cultures of mouse spinal cord neurones: receptor pharmacology and behaviour of synaptic currents. J Physiol 372:169–190CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Patneau DK, Mayer ML (1990) Structure-activity relationships for amino acid transmitter candidates acting at N-methyl-D-aspartate and quisqualate receptors. J Neurosci 10(7):2385–2399PubMedGoogle Scholar
  6. 6.
    Trussell LO, Fischbach GD (1989) Glutamate receptor desensitization and its role in synaptic transmission. Neuron 3(2):209–218CrossRefPubMedGoogle Scholar
  7. 7.
    Hestrin S, Sah P, Nicoll RA (1990) Mechanisms generating the time course of dual component excitatory synaptic currents recorded in hippocampal slices. Neuron 5(3):247–253CrossRefPubMedGoogle Scholar
  8. 8.
    Jahr CE (1992) High probability opening of NMDA receptor channels by L-glutamate. Science 255(5043):470–472CrossRefPubMedGoogle Scholar
  9. 9.
    Lester RA, Clements JD, Westbrook GL, Jahr CE (1990) Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature 346(6284):565–567CrossRefPubMedGoogle Scholar
  10. 10.
    Lester RA, Jahr CE (1992) NMDA channel behavior depends on agonist affinity. J Neurosci 12(2):635–643PubMedGoogle Scholar
  11. 11.
    Sah P, Hestrin S, Nicoll RA (1990) Properties of excitatory postsynaptic currents recorded in vitro from rat hippocampal interneurones. J Physiol 430:605–616CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Huang YH, Lin Y, Mu P, Lee BR, Brown TE, Wayman G, Marie H, Liu W, Yan Z, Sorg BA, Schluter OM, Zukin RS, Dong Y (2009) In vivo cocaine experience generates silent synapses. Neuron 63(1):40–47CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Maricq AV, Peterson AS, Brake AJ, Myers RM, Julius D (1991) Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science 254(5030):432–437CrossRefPubMedGoogle Scholar
  14. 14.
    Eisele JL, Bertrand S, Galzi JL, Devillers-Thiery A, Changeux JP, Bertrand D (1993) Chimaeric nicotinic-serotonergic receptor combines distinct ligand binding and channel specificities. Nature 366(6454):479–483CrossRefPubMedGoogle Scholar
  15. 15.
    Neijt HC, te Duits IJ, Vijverberg HP (1988) Pharmacological characterization of serotonin 5-HT3 receptor-mediated electrical response in cultured mouse neuroblastoma cells. Neuropharmacology 27(3):301–307CrossRefPubMedGoogle Scholar
  16. 16.
    van Hooft JA, Vijverberg HP (1996) Selection of distinct conformational states of the 5-HT3 receptor by full and partial agonists. Br J Pharmacol 117(5):839–846CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Yakel JL, Lagrutta A, Adelman JP, North RA (1993) Single amino acid substitution affects desensitization of the 5-hydroxytryptamine type 3 receptor expressed in Xenopus oocytes. Proc Natl Acad Sci U S A 90(11):5030–5033CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Derkach V, Surprenant A, North RA (1989) 5-HT3 receptors are membrane ion channels. Nature 339(6227):706–709CrossRefPubMedGoogle Scholar
  19. 19.
    Cuevas J, Adams DJ (1994) Local anaesthetic blockade of neuronal nicotinic ACh receptor-channels in rat parasympathetic ganglion cells. Br J Pharmacol 111(3):663–672CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Mathie A, Cull-Candy SG, Colquhoun D (1991) Conductance and kinetic properties of single nicotinic acetylcholine receptor channels in rat sympathetic neurones. J Physiol 439:717–750CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Valles AS, Garbus I, Barrantes FJ (2007) Lamotrigine is an open-channel blocker of the nicotinic acetylcholine receptor. Neuroreport 18(1):45–50CrossRefPubMedGoogle Scholar
  22. 22.
    Feinberg-Zadek PL, Davies PA (2010) Ethanol stabilizes the open state of single 5-hydroxytryptamine(3A)(QDA) receptors. J Pharmacol Exp Ther 333(3):896–902CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Roerig B, Nelson DA, Katz LC (1997) Fast synaptic signaling by nicotinic acetylcholine and serotonin 5-HT3 receptors in developing visual cortex. J Neurosci 17(21):8353–8362PubMedGoogle Scholar
  24. 24.
    Skok VI, Voitenko SV, Bobryshev AY, Voitenko LP, Skok MV (1998) Heterogeneity of neuronal nicotinic acetylcholine receptors: structural and functional aspects. Neurophysiology 30(4-5):200–202CrossRefGoogle Scholar
  25. 25.
    Edwards FA, Gibb AJ, Colquhoun D (1992) ATP receptor-mediated synaptic currents in the central nervous system. Nature 359(6391):144–147CrossRefPubMedGoogle Scholar
  26. 26.
    Barberis A, Mozrzymas JW, Ortinski PI, Vicini S (2007) Desensitization and binding properties determine distinct alpha1beta2gamma2 and alpha3beta2gamma2 GABA(A) receptor-channel kinetic behavior. Eur J Neurosci 25(9):2726–2740CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gingrich KJ, Roberts WA, Kass RS (1995) Dependence of the GABAA receptor gating kinetics on the alpha-subunit isoform: implications for structure-function relations and synaptic transmission. J Physiol 489(Pt 2):529–543CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Mozrzymas JW, Barberis A, Mercik K, Zarnowska ED (2003) Binding sites, singly bound states, and conformation coupling shape GABA-evoked currents. J Neurophysiol 89(2):871–883CrossRefPubMedGoogle Scholar
  29. 29.
    Dunning DD, Hoover CL, Soltesz I, Smith MA, O’Dowd DK (1999) GABA(A) receptor-mediated miniature postsynaptic currents and alpha-subunit expression in developing cortical neurons. J Neurophysiol 82(6):3286–3297PubMedGoogle Scholar
  30. 30.
    Fritschy JM, Paysan J, Enna A, Mohler H (1994) Switch in the expression of rat GABAA-receptor subtypes during postnatal development: an immunohistochemical study. J Neurosci 14(9):5302–5324PubMedGoogle Scholar
  31. 31.
    Takahashi T, Momiyama A, Hirai K, Hishinuma F, Akagi H (1992) Functional correlation of fetal and adult forms of glycine receptors with developmental changes in inhibitory synaptic receptor channels. Neuron 9(6):1155–1161CrossRefPubMedGoogle Scholar
  32. 32.
    Gonzalez-Burgos G, Lewis DA (2008) GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia. Schizophr Bull 34(5):944–961CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Furukawa T, Furshpan EJ (1963) Two inhibitory mechanisms in the Mauthner neurons of goldfish. J Neurophysiol 26:140–176PubMedGoogle Scholar
  34. 34.
    Korn H, Axelrad H (1980) Electrical inhibition of Purkinje cells in the cerebellum of the rat. Proc Natl Acad Sci U S A 77(10):6244–6247CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bennett MV, Zukin RS (2004) Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41(4):495–511CrossRefPubMedGoogle Scholar
  36. 36.
    Sabatini BL, Regehr WG (1996) Timing of neurotransmission at fast synapses in the mammalian brain. Nature 384(6605):170–172CrossRefPubMedGoogle Scholar
  37. 37.
    Bennett MV (1997) Gap junctions as electrical synapses. J Neurocytol 26(6):349–366CrossRefPubMedGoogle Scholar
  38. 38.
    Bennett MV (2000) Seeing is relieving: electrical synapses between visualized neurons. Nat Neurosci 3(1):7–9CrossRefPubMedGoogle Scholar
  39. 39.
    Connors BW, Long MA (2004) Electrical synapses in the mammalian brain. Annu Rev Neurosci 27:393–418CrossRefPubMedGoogle Scholar
  40. 40.
    Buzsaki G, Wang XJ (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203–225CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hormuzdi SG, Pais I, LeBeau FE, Towers SK, Rozov A, Buhl EH, Whittington MA, Monyer H (2001) Impaired electrical signaling disrupts gamma frequency oscillations in connexin 36-deficient mice. Neuron 31(3):487–495CrossRefPubMedGoogle Scholar
  42. 42.
    Nakazawa K, Zsiros V, Jiang Z, Nakao K, Kolata S, Zhang S, Belforte JE (2012) GABAergic interneuron origin of schizophrenia pathophysiology. Neuropharmacology 62(3):1574–1583CrossRefPubMedGoogle Scholar
  43. 43.
    Purves D, Fitzpatrick D, Katz LC, Lamantia AS, McNamara JO, Williams SM, Augustine GJ (2001) Neuroscience. Sinauer Associates, Sunderland, MAGoogle Scholar
  44. 44.
    Vervaeke K, Lőrincz A, Nusser Z, Silver RA (2012) Gap junctions compensate for sublinear dendritic integration in an inhibitory network. Science 335(6076):1624–1628CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Bush PC, Sejnowski TJ (1994) Effects of inhibition and dendritic saturation in simulated neocortical pyramidal cells. J Neurophysiol 71(6):2183–2193PubMedGoogle Scholar
  46. 46.
    Ribelayga C, Cao Y, Mangel SC (2008) The circadian clock in the retina controls rod-cone coupling. Neuron 59(5):790–801CrossRefPubMedGoogle Scholar
  47. 47.
    Zsiros V, Maccaferri G (2008) Noradrenergic modulation of electrical coupling in GABAergic networks of the hippocampus. J Neurosci 28(8):1804–1815CrossRefPubMedGoogle Scholar
  48. 48.
    Rorig B, Sutor B (1996) Serotonin regulates gap junction coupling in the developing rat somatosensory cortex. Eur J Neurosci 8(8):1685–1695CrossRefPubMedGoogle Scholar
  49. 49.
    Hatton GI, Yang QZ (1996) Synaptically released histamine increases dye coupling among vasopressinergic neurons of the supraoptic nucleus: mediation by H1 receptors and cyclic nucleotides. J Neurosci 16(1):123–129PubMedGoogle Scholar
  50. 50.
    Rorig B, Sutor B (1996) Nitric oxide-stimulated increase in intracellular cGMP modulates gap junction coupling in rat neocortex. Neuroreport 7(2):569–572CrossRefPubMedGoogle Scholar
  51. 51.
    Jeong H-J, Jang I-S, Moorhouse AJ, Akaike N (2003) Activation of presynaptic glycine receptors facilitates glycine release from presynaptic terminals synapsing onto rat spinal sacral dorsal commissural nucleus neurons. J Physiol 550(2):373–383CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    MacDermott AB, Role LW, Siegelbaum SA (1999) Presynaptic ionotropic receptors and the control of transmitter release. Annu Rev Neurosci 22:443–485CrossRefPubMedGoogle Scholar
  53. 53.
    Xiong W, Chen SR, He L, Cheng K, Zhao YL, Chen H, Li DP, Homanics GE, Peever J, Rice KC, Wu LG, Pan HL, Zhang L (2014) Presynaptic glycine receptors as a potential therapeutic target for hyperekplexia disease. Nat Neurosci 17(2):232–239CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Neuroscience DepartmentUniversity of PittsburghPittsburghUSA

Personalised recommendations