Advertisement

Isolation of Synaptic Current

  • Nicholas GrazianeEmail author
  • Yan Dong
Part of the Neuromethods book series (NM, volume 112)

Abstract

Synaptic currents can be examined by a variety of different approaches such as isolating quantal currents or evoking currents using electrical or optical stimulation. It is important for a beginning electrophysiologist to fully comprehend each approach so that the right method is used for the intended scientific question. Below we provide conceptual and technical information for miniature, spontaneous, quantal, and evoked postsynaptic currents with useful references that provide additional and in some cases more detailed information.

Key words

Miniature postsynaptic currents Spontaneous postsynaptic currents Quantal postsynaptic currents Evoked currents Optical stimulation Electrical stimulation DREADDs Nanoparticles 

References

  1. 1.
    Kerchner GA, Nicoll RA (2008) Silent synapses and the emergence of a postsynaptic mechanism for LTP. Nat Rev Neurosci 9(11):813–825CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    De Koninck Y, Mody I (1994) Noise analysis of miniature IPSCs in adult rat brain slices: properties and modulation of synaptic GABAA receptor channels. J Neurophysiol 71(4):1318–1335PubMedGoogle Scholar
  3. 3.
    Kavalali ET, Chung C, Khvotchev M, Leitz J, Nosyreva E, Raingo J, Ramirez DM (2011) Spontaneous neurotransmission: an independent pathway for neuronal signaling? Physiology (Bethesda) 26(1):45–53CrossRefGoogle Scholar
  4. 4.
    Ramirez DM, Kavalali ET (2011) Differential regulation of spontaneous and evoked neurotransmitter release at central synapses. Curr Opin Neurobiol 21(2):275–282CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Xu-Friedman MA, Regehr WG (1999) Presynaptic strontium dynamics and synaptic transmission. Biophys J 76(4):2029–2042CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Thomas MJ, Beurrier C, Bonci A, Malenka RC (2001) Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine. Nat Neurosci 4(12):1217–1223CrossRefPubMedGoogle Scholar
  7. 7.
    Bender KJ, Allen CB, Bender VA, Feldman DE (2006) Synaptic basis for whisker deprivation-induced synaptic depression in rat somatosensory cortex. J Neurosci 26(16):4155–4165CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bezanilla F (2008) How membrane proteins sense voltage. Nat Rev Mol Cell Biol 9(4):323–332CrossRefPubMedGoogle Scholar
  9. 9.
    Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268CrossRefPubMedGoogle Scholar
  10. 10.
    Li X, Gutierrez DV, Hanson MG, Han J, Mark MD, Chiel H, Hegemann P, Landmesser LT, Herlitze S (2005) Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc Natl Acad Sci U S A 102(49):17816–17821CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15(24):2279–2284CrossRefPubMedGoogle Scholar
  12. 12.
    Bamann C, Kirsch T, Nagel G, Bamberg E (2008) Spectral characteristics of the photocycle of channelrhodopsin-2 and its implication for channel function. J Mol Biol 375(3):686–694CrossRefPubMedGoogle Scholar
  13. 13.
    Feldbauer K, Zimmermann D, Pintschovius V, Spitz J, Bamann C, Bamberg E (2009) Channelrhodopsin-2 is a leaky proton pump. Proc Natl Acad Sci U S A 106(30):12317–12322CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100(24):13940–13945CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lin JY, Lin MZ, Steinbach P, Tsien RY (2009) Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys J 96(5):1803–1814CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lin JY (2011) A user’s guide to channelrhodopsin variants: features, limitations and future developments. Exp Physiol 96(1):19–25CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang F, Gradinaru V, Adamantidis AR, Durand R, Airan RD, de Lecea L, Deisseroth K (2010) Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat Protoc 5(3):439–456CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zincarelli C, Soltys S, Rengo G, Rabinowitz JE (2008) Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 16(6):1073–1080CrossRefPubMedGoogle Scholar
  19. 19.
    Aponte Y, Atasoy D, Sternson SM (2011) AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat Neurosci 14(3):351–355CrossRefPubMedGoogle Scholar
  20. 20.
    Atasoy D, Aponte Y, Su HH, Sternson SM (2008) A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J Neurosci 28(28):7025–7030CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Cao ZF, Burdakov D, Sarnyai Z (2011) Optogenetics: potentials for addiction research. Addict Biol 16(4):519–531CrossRefPubMedGoogle Scholar
  22. 22.
    Tye KM, Deisseroth K (2012) Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci 13(4):251–266CrossRefPubMedGoogle Scholar
  23. 23.
    Suska A, Lee BR, Huang YH, Dong Y, Schluter OM (2013) Selective presynaptic enhancement of the prefrontal cortex to nucleus accumbens pathway by cocaine. Proc Natl Acad Sci U S A 110(2):713–718CrossRefPubMedGoogle Scholar
  24. 24.
    Alexander GM, Rogan SC, Abbas AI, Armbruster BN, Pei Y, Allen JA, Nonneman RJ, Hartmann J, Moy SS, Nicolelis MA, McNamara JO, Roth BL (2009) Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63(1):27–39CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zhu H, Roth BL (2014) Silencing synapses with DREADDs. Neuron 82(4):723–725CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ferguson SM, Eskenazi D, Ishikawa M, Wanat MJ, Phillips PE, Dong Y, Roth BL, Neumaier JF (2011) Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization. Nat Neurosci 14(1):22–24CrossRefPubMedGoogle Scholar
  27. 27.
    Urban DJ, Roth BL (2015) DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu Rev Pharmacol Toxicol 55:399–417CrossRefPubMedGoogle Scholar
  28. 28.
    Guettier JM, Gautam D, Scarselli M, Ruiz de Azua I, Li JH, Rosemond E, Ma X, Gonzalez FJ, Armbruster BN, Lu H, Roth BL, Wess J (2009) A chemical-genetic approach to study G protein regulation of beta cell function in vivo. Proc Natl Acad Sci U S A 106(45):19197–19202CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Carvalho-de-Souza JL, Treger JS, Dang B, Kent SB, Pepperberg DR, Bezanilla F (2015) Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron 86(1):207–217CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Neuroscience DepartmentUniversity of PittsburghPittsburghUSA

Personalised recommendations