Perforated Patch

  • Nicholas GrazianeEmail author
  • Yan Dong
Part of the Neuromethods book series (NM, volume 112)


In whole-cell patch clamp mode the internal solution of the micropipette perfuses the cell replacing the much smaller cytosolic solution. Because of this, some soluble factors that modulate cellular excitability and influence signaling pathways are washed out via the micropipette causing altered intracellular signaling, cellular function, or the active state of ion channels. One of the commonly observed consequences is current run-down, which refers to the gradual loss of current over time. Key molecules have been added to the micropipette’s intracellular solution in order to impede current run-down. ATP and/or creatine/phosphocreatine are added to prevent channel dephosphorylation and protease inhibitors are added to prevent proteolytic degradation of channel proteins [1]. However, these components are not always successful in preventing current run-down as other factors can elicit the slow demise of current recordings in whole-cell patch through the disruption of the actin cytoskeleton [2].

Key words

Polyene antibiotics Gramicidin D β-Escin 


  1. 1.
    Sarantopoulos C (2007) Perforated patch-clamp techniques. Neuromethods 38:253–293CrossRefGoogle Scholar
  2. 2.
    Furukawa T, Yamane T-i, Terai T, Katayama Y, Hiraoka M (1996) Functional linkage of the cardiac ATP-sensitive K+ channel to the actin cytoskeleton. Pflugers Arch 431(4):504–512CrossRefPubMedGoogle Scholar
  3. 3.
    Arav R, Friedberg I (1985) ATP analogues induce membrane permeabilization in transformed mouse fibroblasts. Biochim Biophys Acta (BBA) Biomembr 820(2):183–188CrossRefGoogle Scholar
  4. 4.
    Akaike N, Harata N (1994) Nystatin perforated patch recording and its applications to analyses of intracellular mechanisms. Jpn J Physiol 44(5):433–473CrossRefPubMedGoogle Scholar
  5. 5.
    Cotero BV, Rebolledo-Antunez S, Ortega-Blake I (1998) On the role of sterol in the formation of the amphotericin B channel. Biochim Biophys Acta 1375(1-2):43–51CrossRefPubMedGoogle Scholar
  6. 6.
    Gruszecki WI, Gagos M, Herec M, Kernen P (2003) Organization of antibiotic amphotericin B in model lipid membranes. A mini review. Cell Mol Biol Lett 8(1):161–170PubMedGoogle Scholar
  7. 7.
    Venegas B, Gonzalez-Damian J, Celis H, Ortega-Blake I (2003) Amphotericin B channels in the bacterial membrane: role of sterol and temperature. Biophys J 85(4):2323–2332CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Horn R, Korn SJ (1992) Prevention of rundown in electrophysiological recording. Methods Enzymol 207:149–155CrossRefPubMedGoogle Scholar
  9. 9.
    Horn R, Marty A (1988) Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol 92(2):145–159CrossRefPubMedGoogle Scholar
  10. 10.
    Marty A, Finkelstein A (1975) Pores formed in lipid bilayer membranes by nystatin, Differences in its one-sided and two-sided action. J Gen Physiol 65(4):515–526CrossRefPubMedGoogle Scholar
  11. 11.
    Hladky SB, Haydon DA (1970) Discreteness of conductance change in bimolecular lipid membranes in the presence of certain antibiotics. Nature 225(5231):451–453CrossRefPubMedGoogle Scholar
  12. 12.
    Holz R, Finkelstein A (1970) The water and nonelectrolyte permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. J Gen Physiol 56(1):125–145CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ermishkin LN, Kasumov KM, Potzeluyev VM (1976) Single ionic channels induced in lipid bilayers by polyene antibiotics amphotericin B and nystatine. Nature 262(5570):698–699CrossRefPubMedGoogle Scholar
  14. 14.
    Kasumov KM, Borisova MP, Ermishkin LN, Potseluyev VM, Silberstein AY, Vainshtein VA (1979) How do ionic channel properties depend on the structure of polyene antibiotic molecules? Biochim Biophys Acta 551(2):229–237CrossRefPubMedGoogle Scholar
  15. 15.
    de Kruijff B, Demel RA (1974) Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. III. Molecular structure of the polyene antibiotic-cholesterol complexes. Biochim Biophys Acta (BBA) Biomembr 339(1):57–70CrossRefGoogle Scholar
  16. 16.
    de Kruijff B, Gerritsen WJ, Oerlemans A, Demel RA, van Deenen LL (1974) Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. I. Specificity of the membrane permeability changes induced by the polyene antibiotics. Biochim Biophys Acta 339(1):30–43CrossRefPubMedGoogle Scholar
  17. 17.
    de Kruijff B, Gerritsen WJ, Oerlemans A, van Dijck PW, Demel RA, van Deenen LL (1974) Polyene antibiotic-sterol interactions in membranes of Acholesplasma laidlawii cells and lecithin liposomes. II. Temperature dependence of the polyene antibiotic-sterol complex formation. Biochim Biophys Acta 339(1):44–56CrossRefPubMedGoogle Scholar
  18. 18.
    Andreoli TE, Bangham JA, Tosteson DC (1967) The formation and properties of thin lipid membranes from HK and LK sheep red cell lipids. J Gen Physiol 50(6):1729–1749CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Mueller P, Rudin DO (1967) Development of K+-Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics. Biochem Biophys Res Commun 26(4):398–404CrossRefPubMedGoogle Scholar
  20. 20.
    Tosteson DC, Andreoli TE, Tieffenberg M, Cook P (1968) The effects of macrocyclic compounds on cation transport in sheep red cells and thin and thick lipid membranes. J Gen Physiol 51(5):373–384PubMedPubMedCentralGoogle Scholar
  21. 21.
    Ishibashi H, Moorhouse A, Nabekura J (2012) Perforated whole-cell patch-clamp technique: a user’s guide. In: Okada Y (ed) Patch clamp techniques. Springer, Japan, pp 71–83CrossRefGoogle Scholar
  22. 22.
    Fu LY, Wang F, Chen XS, Zhou HY, Yao WX, Xia GJ, Jiang MX (2003) Perforated patch recording of L-type calcium current with beta-escin in guinea pig ventricular myocytes. Acta Pharmacol Sin 24(11):1094–1098PubMedGoogle Scholar
  23. 23.
    Rae J, Cooper K, Gates P, Watsky M (1991) Low access resistance perforated patch recordings using amphotericin B. J Neurosci Methods 37(1):15–26CrossRefPubMedGoogle Scholar
  24. 24.
    Abe H, Konishi H, Komiya H, Arichi S (1981) Effects of saikosaponins on biological membranes. 3. Ultrastructural studies on effects of saikosaponins on the cell surface. Planta Med 42(4):356–363CrossRefPubMedGoogle Scholar
  25. 25.
    Gauthier C, Legault J, Girard-Lalancette K, Mshvildadze V, Pichette A (2009) Haemolytic activity, cytotoxicity and membrane cell permeabilization of semi-synthetic and natural lupane- and oleanane-type saponins. Bioorg Med Chem 17(5):2002–2008CrossRefPubMedGoogle Scholar
  26. 26.
    Melzig MF, Bader G, Loose R (2001) Investigations of the mechanism of membrane activity of selected triterpenoid saponins. Planta Med 67(1):43–48CrossRefPubMedGoogle Scholar
  27. 27.
    Podolak I, Galanty A, Sobolewska D (2010) Saponins as cytotoxic agents: a review. Phytochem Rev 9(3):425–474CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Neuroscience DepartmentUniversity of PittsburghPittsburghUSA

Personalised recommendations