Advertisement

Spatiotemporal Effects of Synaptic Current

  • Nicholas GrazianeEmail author
  • Yan Dong
Part of the Neuromethods book series (NM, volume 112)

Abstract

A neuron receives excitatory and inhibitory electrical signals from other neurons via synaptic connections on dendritic spines, branches, or somatic membranes. These signals travel from different locations to the soma depolarizing or hyperpolarizing the membrane, thus regulating cell excitability. Although this is a straightforward concept, there are a multitude of intricate details that occur at the neuronal level, which regulate this process. This chapter looks to describe these spatiotemporal details of synaptic input so that the beginning electrophysiologist can become aware of the full potential of neuronal communication. To begin, we discuss Wilfrid Rall’s cable theory followed by empirical evidence supporting or refuting Rall’s predictions. This is followed by an introduction into Hebbian plasticity or spike-timing dependent plasticity (STDP), which is a process critically dependent upon the temporal firing activity of both presynaptic and postsynaptic neurons.

Key words

Cable filtering theory Membrane responses to synaptic input Hebbian plasticity Space clamp artifacts 

References

  1. 1.
    Rall W (1967) Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J Neurophysiol 30(5):1138–1168PubMedGoogle Scholar
  2. 2.
    Rall W, Burke RE, Smith TG, Nelson PG, Frank K (1967) Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons. J Neurophysiol 30(5):1169–1193PubMedGoogle Scholar
  3. 3.
    Magee JC (2000) Dendritic integration of excitatory synaptic input. Nat Rev Neurosci 1(3):181–190CrossRefPubMedGoogle Scholar
  4. 4.
    Rall W, Segev I, Rinzel J, Shepherd GM (1995) The theoretical foundation of dendritic function: selected papers of Wilfrid Rall with commentaries. Bradford Books, LondonGoogle Scholar
  5. 5.
    Reiss RF, U S A F O o S Research and I. General Precision (1964). Neural theory and modeling: proceedings of the 1962 Ojai symposium, Stanford University PressGoogle Scholar
  6. 6.
    Magee JC, Cook EP (2000) Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nat Neurosci 3(9):895–903CrossRefPubMedGoogle Scholar
  7. 7.
    Williams SR, Stuart GJ (2002) Dependence of EPSP efficacy on synapse location in neocortical pyramidal neurons. Science 295(5561):1907–1910CrossRefPubMedGoogle Scholar
  8. 8.
    Andrasfalvy BK, Magee JC (2001) Distance-dependent increase in AMPA receptor number in the dendrites of adult hippocampal CA1 pyramidal neurons. J Neurosci 21(23):9151–9159PubMedGoogle Scholar
  9. 9.
    Matsuzaki M, Ellis-Davies GC, Nemoto T, Miyashita Y, Iino M, Kasai H (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4(11):1086–1092CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Spruston N, Jonas P, Sakmann B (1995) Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. J Physiol 482(Pt 2):325–352CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Williams SR, Stuart GJ (2003) Role of dendritic synapse location in the control of action potential output. Trends Neurosci 26(3):147–154CrossRefPubMedGoogle Scholar
  12. 12.
    Berger T, Larkum ME, Luscher HR (2001) High I(h) channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. J Neurophysiol 85(2):855–868PubMedGoogle Scholar
  13. 13.
    Magee JC (1999) Dendritic lh normalizes temporal summation in hippocampal CA1 neurons. Nat Neurosci 2(6):508–514CrossRefPubMedGoogle Scholar
  14. 14.
    Williams SR, Stuart GJ (2000) Site independence of EPSP time course is mediated by dendritic I(h) in neocortical pyramidal neurons. J Neurophysiol 83(5):3177–3182PubMedGoogle Scholar
  15. 15.
    Magee JC (1998) Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J Neurosci 18(19):7613–7624PubMedGoogle Scholar
  16. 16.
    Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387(6636):869–875CrossRefPubMedGoogle Scholar
  17. 17.
    Schwindt PC, Crill WE (1995) Amplification of synaptic current by persistent sodium conductance in apical dendrite of neocortical neurons. J Neurophysiol 74(5):2220–2224PubMedGoogle Scholar
  18. 18.
    Stuart G, Sakmann B (1995) Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons. Neuron 15(5):1065–1076CrossRefPubMedGoogle Scholar
  19. 19.
    Cash S, Yuste R (1999) Linear summation of excitatory inputs by CA1 pyramidal neurons. Neuron 22(2):383–394CrossRefPubMedGoogle Scholar
  20. 20.
    Skydsgaard M, Hounsgaard J (1994) Spatial integration of local transmitter responses in motoneurones of the turtle spinal cord in vitro. J Physiol 479(Pt 2):233–246CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Reyes A (2001) Influence of dendritic conductances on the input-output properties of neurons. Annu Rev Neurosci 24:653–675CrossRefPubMedGoogle Scholar
  22. 22.
    Golding NL, Jung HY, Mickus T, Spruston N (1999) Dendritic calcium spike initiation and repolarization are controlled by distinct potassium channel subtypes in CA1 pyramidal neurons. J Neurosci 19(20):8789–8798PubMedGoogle Scholar
  23. 23.
    Schiller J, Schiller Y, Stuart G, Sakmann B (1997) Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. J Physiol 505(Pt 3):605–616CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Schwindt P, Crill W (1999) Mechanisms underlying burst and regular spiking evoked by dendritic depolarization in layer 5 cortical pyramidal neurons. J Neurophysiol 81(3):1341–1354PubMedGoogle Scholar
  25. 25.
    Nettleton JS, Spain WJ (2000) Linear to supralinear summation of AMPA-mediated EPSPs in neocortical pyramidal neurons. J Neurophysiol 83(6):3310–3322PubMedGoogle Scholar
  26. 26.
    Britt JP, Benaliouad F, McDevitt RA, Stuber GD, Wise RA, Bonci A (2012) Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron 76(4):790–803CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley, New YorkGoogle Scholar
  28. 28.
    Levy WB, Steward O (1983) Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience 8(4):791–797CrossRefPubMedGoogle Scholar
  29. 29.
    Walters ET, Byrne JH (1983) Associative conditioning of single sensory neurons suggests a cellular mechanism for learning. Science 219(4583):405–408CrossRefPubMedGoogle Scholar
  30. 30.
    Bell CC, Han VZ, Sugawara Y, Grant K (1997) Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387(6630):278–281CrossRefPubMedGoogle Scholar
  31. 31.
    Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18(24):10464–10472PubMedGoogle Scholar
  32. 32.
    Debanne D, Gahwiler BH, Thompson SM (1998) Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J Physiol 507(Pt 1):237–247CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Egger V, Feldmeyer D, Sakmann B (1999) Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex. Nat Neurosci 2(12):1098–1105CrossRefPubMedGoogle Scholar
  34. 34.
    Fino E, Deniau JM, Venance L (2008) Cell-specific spike-timing-dependent plasticity in GABAergic and cholinergic interneurons in corticostriatal rat brain slices. J Physiol 586(1):265–282CrossRefPubMedGoogle Scholar
  35. 35.
    Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275(5297):209–213CrossRefPubMedGoogle Scholar
  36. 36.
    Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275(5297):213–215CrossRefPubMedGoogle Scholar
  37. 37.
    Zhang LI, Tao HW, Holt CE, Harris WA, Poo M (1998) A critical window for cooperation and competition among developing retinotectal synapses. Nature 395(6697):37–44CrossRefPubMedGoogle Scholar
  38. 38.
    Caporale N, Dan Y (2008) Spike timing-dependent plasticity: a Hebbian learning rule. Annu Rev Neurosci 31:25–46CrossRefPubMedGoogle Scholar
  39. 39.
    Feldman DE (2012) The spike-timing dependence of plasticity. Neuron 75(4):556–571CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Tsubokawa H, Offermanns S, Simon M, Kano M (2000) Calcium-dependent persistent facilitation of spike backpropagation in the CA1 pyramidal neurons. J Neurosci 20(13):4878–4884PubMedGoogle Scholar
  41. 41.
    Watanabe S, Hoffman DA, Migliore M, Johnston D (2002) Dendritic K+ channels contribute to spike-timing dependent long-term potentiation in hippocampal pyramidal neurons. Proc Natl Acad Sci U S A 99(12):8366–8371CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Stuart GJ, Hausser M (2001) Dendritic coincidence detection of EPSPs and action potentials. Nat Neurosci 4(1):63–71CrossRefPubMedGoogle Scholar
  43. 43.
    Froemke RC, Poo MM, Dan Y (2005) Spike-timing-dependent synaptic plasticity depends on dendritic location. Nature 434(7030):221–225CrossRefPubMedGoogle Scholar
  44. 44.
    Letzkus JJ, Kampa BM, Stuart GJ (2006) Learning rules for spike timing-dependent plasticity depend on dendritic synapse location. J Neurosci 26(41):10420–10429CrossRefPubMedGoogle Scholar
  45. 45.
    Hoffman DA, Johnston D (1998) Downregulation of transient K+ channels in dendrites of hippocampal CA1 pyramidal neurons by activation of PKA and PKC. J Neurosci 18(10):3521–3528PubMedGoogle Scholar
  46. 46.
    Hoffman DA, Johnston D (1999) Neuromodulation of dendritic action potentials. J Neurophysiol 81(1):408–411PubMedGoogle Scholar
  47. 47.
    Ruan H, Saur T, Yao WD (2014) Dopamine-enabled anti-Hebbian timing-dependent plasticity in prefrontal circuitry. Front Neural Circuits 8:38CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Tsubokawa H, Ross WN (1997) Muscarinic modulation of spike backpropagation in the apical dendrites of hippocampal CA1 pyramidal neurons. J Neurosci 17(15):5782–5791PubMedGoogle Scholar
  49. 49.
    Cassenaer S, Laurent G (2007) Hebbian STDP in mushroom bodies facilitates the synchronous flow of olfactory information in locusts. Nature 448(7154):709–713CrossRefPubMedGoogle Scholar
  50. 50.
    Jacob V, Brasier DJ, Erchova I, Feldman D, Shulz DE (2007) Spike timing-dependent synaptic depression in the in vivo barrel cortex of the rat. J Neurosci 27(6):1271–1284CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Wolters A, Sandbrink F, Schlottmann A, Kunesch E, Stefan K, Cohen LG, Benecke R, Classen J (2003) A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex. J Neurophysiol 89(5):2339–2345CrossRefPubMedGoogle Scholar
  52. 52.
    Molleman A (2003) Basic theoretical principles. Patch clamping. Wiley, New York, pp 5–42Google Scholar
  53. 53.
    Stuart G, Schiller J, Sakmann B (1997) Action potential initiation and propagation in rat neocortical pyramidal neurons. J Physiol 505(Pt 3):617–632CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Neuroscience DepartmentUniversity of PittsburghPittsburghUSA

Personalised recommendations