Skip to main content

Salt Environment

  • Protocol
  • 2501 Accesses

Part of the book series: Neuromethods ((NM,volume 112))

Abstract

In order to develop physiologically relevant experiments that test electrical activity in and between neurons, it is necessary to closely model the physiological milieu. This chapter discusses external and internal solution components for in vitro brain slice electrophysiology. These recipes have been developed throughout the years to model the physiological environment and to help produce viable, healthy neurons.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Polderman KH, van de Kraats G, Dixon JM, Vandertop WP, Girbes AR (2003) Increases in spinal fluid osmolarity induced by mannitol. Crit Care Med 31(2):584–590

    Article  CAS  PubMed  Google Scholar 

  2. Sharp PE, Regina MCL (1998) The laboratory rat. Taylor & Francis, Boston, MA

    Google Scholar 

  3. Irani DN (2009) Cerebrospinal fluid in clinical practice. Saunders/Elsevier, Philadelphia, PA

    Google Scholar 

  4. Reed D, Withrow CD, Woodbury D (1967) Electrolyte and acid-base parameters of rat cerebrospinal fluid. Exp Brain Res 3(3):212–219

    Article  CAS  PubMed  Google Scholar 

  5. Jeong SM, Hahm KD, Shin JW, Leem JG, Lee C, Han SM (2006) Changes in magnesium concentration in the serum and cerebrospinal fluid of neuropathic rats. Acta Anaesthesiol Scand 50(2):211–216

    Article  CAS  PubMed  Google Scholar 

  6. LeVine SM, Wulser MJ, Lynch SG (1998) Iron quantification in cerebrospinal fluid. Anal Biochem 265(1):74–78

    Article  CAS  PubMed  Google Scholar 

  7. Espino A, Ambrosio S, Bartrons R, Bendahan G, Calopa M (1994) Cerebrospinal monoamine metabolites and amino acid content in patients with parkinsonian syndrome and rats lesioned with MPP+. J Neural Transm Park Dis Dement Sect 7(3):167–176

    Article  CAS  PubMed  Google Scholar 

  8. Ganrot K, Laurell C-B (1974) Measurement of IgG and albumin content of cerebrospinal fluid, and its interpretation. Clin Chem 20(5):571–573

    CAS  PubMed  Google Scholar 

  9. Habgood MD, Sedgwick JE, Dziegielewska KM, Saunders NR (1992) A developmentally regulated blood-cerebrospinal fluid transfer mechanism for albumin in immature rats. J Physiol 456:181–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hutchesson A, Preece MA, Gray G, Green A (1997) Measurement of lactate in cerebrospinal fluid in investigation of inherited metabolic disease. Clin Chem 43(1):158–161

    CAS  PubMed  Google Scholar 

  11. Swahn CG, Sedvall G (1988) CSF creatinine in schizophrenia. Biol Psychiatry 23(6):586–594

    Article  CAS  PubMed  Google Scholar 

  12. Martina M, Taverna S (2014) Patch-clamp methods and protocols. Springer, New York

    Book  Google Scholar 

  13. Huang S, Uusisaari MY (2013) Physiological temperature during brain slicing enhances the quality of acute slice preparations. Front Cell Neurosci 7:48

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lipton P, Aitken PG, Dudek FE, Eskessen K, Espanol MT, Ferchmin PA, Kelly JB, Kreisman NR, Landfield PW, Larkman PM et al (1995) Making the best of brain slices: comparing preparative methods. J Neurosci Methods 59(1):151–156

    Article  CAS  PubMed  Google Scholar 

  15. Lee BR, Ma YY, Huang YH, Wang X, Otaka M, Ishikawa M, Neumann PA, Graziane NM, Brown TE, Suska A, Guo C, Lobo MK, Sesack SR, Wolf ME, Nestler EJ, Shaham Y, Schluter OM, Dong Y (2013) Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving. Nat Neurosci 16(11):1644–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alvarez-Leefmans F (1990) Intracellular Cl− regulation and synaptic inhibition in vertebrate and invertebrate neurons. In: Alvarez-Leefmans F, Russell J (eds) Chloride channels and carriers in nerve, muscle, and glial cells. Springer, USA, pp 109–158

    Chapter  Google Scholar 

  17. Chesler M (1990) The regulation and modulation of pH in the nervous system. Prog Neurobiol 34(5):401–427

    Article  CAS  PubMed  Google Scholar 

  18. Erecinska M, Silver IA (1989) ATP and brain function. J Cereb Blood Flow Metab 9(1):2–19

    Article  CAS  PubMed  Google Scholar 

  19. Taylor JS, Vigneron DB, Murphy-Boesch J, Nelson SJ, Kessler HB, Coia L, Curran W, Brown TR (1991) Free magnesium levels in normal human brain and brain tumors: 31P chemical-shift imaging measurements at 1.5 T. Proc Natl Acad Sci U S A 88(15):6810–6814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Higashijima T, Ferguson KM, Sternweis PC (1987) Regulation of hormone-sensitive GTP-dependent regulatory proteins by chloride. J Biol Chem 262(8):3597–3602

    CAS  PubMed  Google Scholar 

  21. Sarantopoulos C (2007) Perforated patch-clamp techniques. Neuromethods 38:253–293

    Article  CAS  Google Scholar 

  22. Kay AR (1992) An intracellular medium formulary. J Neurosci Methods 44(2–3):91–100

    Article  CAS  PubMed  Google Scholar 

  23. Liao D, Hessler NA, Malinow R (1995) Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 375(6530):400–404

    Article  CAS  PubMed  Google Scholar 

  24. Kettenmann H, Grantyn R (1992) Practical electrophysiological methods: a guide for in vitro studies in vertebrate neurobiology. Wiley, Chichester

    Google Scholar 

  25. Belles B, Malécot CO, Hescheler J, Trautwein W (1988) “Run-down” of the Ca current during long whole-cell recordings in guinea pig heart cells: role of phosphorylation and intracellular calcium. Pflugers Arch 411(4):353–360

    Article  CAS  PubMed  Google Scholar 

  26. Horn R, Korn SJ (1992) Prevention of rundown in electrophysiological recording. Methods Enzymol 207:149–155

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Graziane .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Graziane, N., Dong, Y. (2016). Salt Environment. In: Electrophysiological Analysis of Synaptic Transmission. Neuromethods, vol 112. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3274-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3274-0_4

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3273-3

  • Online ISBN: 978-1-4939-3274-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics