Advertisement

Salt Environment

  • Nicholas GrazianeEmail author
  • Yan Dong
Part of the Neuromethods book series (NM, volume 112)

Abstract

In order to develop physiologically relevant experiments that test electrical activity in and between neurons, it is necessary to closely model the physiological milieu. This chapter discusses external and internal solution components for in vitro brain slice electrophysiology. These recipes have been developed throughout the years to model the physiological environment and to help produce viable, healthy neurons.

Key words

Ionic concentrations Brain slice preparation Osmolality Osmolarity 

References

  1. 1.
    Polderman KH, van de Kraats G, Dixon JM, Vandertop WP, Girbes AR (2003) Increases in spinal fluid osmolarity induced by mannitol. Crit Care Med 31(2):584–590CrossRefPubMedGoogle Scholar
  2. 2.
    Sharp PE, Regina MCL (1998) The laboratory rat. Taylor & Francis, Boston, MAGoogle Scholar
  3. 3.
    Irani DN (2009) Cerebrospinal fluid in clinical practice. Saunders/Elsevier, Philadelphia, PAGoogle Scholar
  4. 4.
    Reed D, Withrow CD, Woodbury D (1967) Electrolyte and acid-base parameters of rat cerebrospinal fluid. Exp Brain Res 3(3):212–219CrossRefPubMedGoogle Scholar
  5. 5.
    Jeong SM, Hahm KD, Shin JW, Leem JG, Lee C, Han SM (2006) Changes in magnesium concentration in the serum and cerebrospinal fluid of neuropathic rats. Acta Anaesthesiol Scand 50(2):211–216CrossRefPubMedGoogle Scholar
  6. 6.
    LeVine SM, Wulser MJ, Lynch SG (1998) Iron quantification in cerebrospinal fluid. Anal Biochem 265(1):74–78CrossRefPubMedGoogle Scholar
  7. 7.
    Espino A, Ambrosio S, Bartrons R, Bendahan G, Calopa M (1994) Cerebrospinal monoamine metabolites and amino acid content in patients with parkinsonian syndrome and rats lesioned with MPP+. J Neural Transm Park Dis Dement Sect 7(3):167–176CrossRefPubMedGoogle Scholar
  8. 8.
    Ganrot K, Laurell C-B (1974) Measurement of IgG and albumin content of cerebrospinal fluid, and its interpretation. Clin Chem 20(5):571–573PubMedGoogle Scholar
  9. 9.
    Habgood MD, Sedgwick JE, Dziegielewska KM, Saunders NR (1992) A developmentally regulated blood-cerebrospinal fluid transfer mechanism for albumin in immature rats. J Physiol 456:181–192CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hutchesson A, Preece MA, Gray G, Green A (1997) Measurement of lactate in cerebrospinal fluid in investigation of inherited metabolic disease. Clin Chem 43(1):158–161PubMedGoogle Scholar
  11. 11.
    Swahn CG, Sedvall G (1988) CSF creatinine in schizophrenia. Biol Psychiatry 23(6):586–594CrossRefPubMedGoogle Scholar
  12. 12.
    Martina M, Taverna S (2014) Patch-clamp methods and protocols. Springer, New YorkCrossRefGoogle Scholar
  13. 13.
    Huang S, Uusisaari MY (2013) Physiological temperature during brain slicing enhances the quality of acute slice preparations. Front Cell Neurosci 7:48CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lipton P, Aitken PG, Dudek FE, Eskessen K, Espanol MT, Ferchmin PA, Kelly JB, Kreisman NR, Landfield PW, Larkman PM et al (1995) Making the best of brain slices: comparing preparative methods. J Neurosci Methods 59(1):151–156CrossRefPubMedGoogle Scholar
  15. 15.
    Lee BR, Ma YY, Huang YH, Wang X, Otaka M, Ishikawa M, Neumann PA, Graziane NM, Brown TE, Suska A, Guo C, Lobo MK, Sesack SR, Wolf ME, Nestler EJ, Shaham Y, Schluter OM, Dong Y (2013) Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving. Nat Neurosci 16(11):1644–1651CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Alvarez-Leefmans F (1990) Intracellular Cl− regulation and synaptic inhibition in vertebrate and invertebrate neurons. In: Alvarez-Leefmans F, Russell J (eds) Chloride channels and carriers in nerve, muscle, and glial cells. Springer, USA, pp 109–158CrossRefGoogle Scholar
  17. 17.
    Chesler M (1990) The regulation and modulation of pH in the nervous system. Prog Neurobiol 34(5):401–427CrossRefPubMedGoogle Scholar
  18. 18.
    Erecinska M, Silver IA (1989) ATP and brain function. J Cereb Blood Flow Metab 9(1):2–19CrossRefPubMedGoogle Scholar
  19. 19.
    Taylor JS, Vigneron DB, Murphy-Boesch J, Nelson SJ, Kessler HB, Coia L, Curran W, Brown TR (1991) Free magnesium levels in normal human brain and brain tumors: 31P chemical-shift imaging measurements at 1.5 T. Proc Natl Acad Sci U S A 88(15):6810–6814CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Higashijima T, Ferguson KM, Sternweis PC (1987) Regulation of hormone-sensitive GTP-dependent regulatory proteins by chloride. J Biol Chem 262(8):3597–3602PubMedGoogle Scholar
  21. 21.
    Sarantopoulos C (2007) Perforated patch-clamp techniques. Neuromethods 38:253–293CrossRefGoogle Scholar
  22. 22.
    Kay AR (1992) An intracellular medium formulary. J Neurosci Methods 44(2–3):91–100CrossRefPubMedGoogle Scholar
  23. 23.
    Liao D, Hessler NA, Malinow R (1995) Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 375(6530):400–404CrossRefPubMedGoogle Scholar
  24. 24.
    Kettenmann H, Grantyn R (1992) Practical electrophysiological methods: a guide for in vitro studies in vertebrate neurobiology. Wiley, ChichesterGoogle Scholar
  25. 25.
    Belles B, Malécot CO, Hescheler J, Trautwein W (1988) “Run-down” of the Ca current during long whole-cell recordings in guinea pig heart cells: role of phosphorylation and intracellular calcium. Pflugers Arch 411(4):353–360CrossRefPubMedGoogle Scholar
  26. 26.
    Horn R, Korn SJ (1992) Prevention of rundown in electrophysiological recording. Methods Enzymol 207:149–155CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Neuroscience DepartmentUniversity of PittsburghPittsburghUSA

Personalised recommendations