Extracellular Recordings

  • Nicholas GrazianeEmail author
  • Yan Dong
Part of the Neuromethods book series (NM, volume 112)


The common approach to scientific research is to follow the theory of reductionism, which dissects complex scientific questions into basic components, thus limiting experimental variables and potential confounds in the experimental results. In electrophysiology, the reductionist’s approach has successfully provided a plethora of groundbreaking findings especially through the use of ex vivo measurements whereby the experimenter can more easily manipulate the circuit and/or neuron. However, by taking this ex vivo approach, many additional findings may go undiscovered and the physiological relevance may be questioned as neurons or circuits are removed from their in vivo milieu. Therefore, in vivo electrophysiology is a useful tool for the beginning electrophysiologist to become acquainted with as it extends ex vivo findings into physiologically relevant discoveries.

Key words

Action potentials Synaptic currents Intrinsic currents Calcium spikes Afterhyperpolarization currents Gap junctions Glia Ephaptic conduction Electroencephalogram Electrocorticogram Local field potentials 


  1. 1.
    Buzsaki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13(6):407–420CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Glickfeld LL, Roberts JD, Somogyi P, Scanziani M (2009) Interneurons hyperpolarize pyramidal cells along their entire somatodendritic axis. Nat Neurosci 12(1):21–23CrossRefPubMedGoogle Scholar
  3. 3.
    Trevelyan AJ (2009) The direct relationship between inhibitory currents and local field potentials. J Neurosci 29(48):15299–15307CrossRefPubMedGoogle Scholar
  4. 4.
    Llinas RR (1988) The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242(4886):1654–1664CrossRefPubMedGoogle Scholar
  5. 5.
    Schiller J, Schiller Y, Stuart G, Sakmann B (1997) Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. J Physiol 505(Pt 3):605–616CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wong RK, Prince DA, Basbaum AI (1979) Intradendritic recordings from hippocampal neurons. Proc Natl Acad Sci U S A 76(2):986–990CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hirsch JA, Alonso JM, Reid RC (1995) Visually evoked calcium action potentials in cat striate cortex. Nature 378(6557):612–616CrossRefPubMedGoogle Scholar
  8. 8.
    Larkum ME, Nevian T, Sandler M, Polsky A, Schiller J (2009) Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science 325(5941):756–760CrossRefPubMedGoogle Scholar
  9. 9.
    Schiller J, Major G, Koester HJ, Schiller Y (2000) NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature 404(6775):285–289CrossRefPubMedGoogle Scholar
  10. 10.
    Stuart G, Spruston N, Häusser M (2007) Dendrites. Oxford University Press, OxfordCrossRefGoogle Scholar
  11. 11.
    Belluscio MA, Mizuseki K, Schmidt R, Kempter R, Buzsaki G (2012) Cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus. J Neurosci 32(2):423–435CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Manning JR, Jacobs J, Fried I, Kahana MJ (2009) Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J Neurosci 29(43):13613–13620CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Miller KJ, Sorensen LB, Ojemann JG, den Nijs M (2009) Power-law scaling in the brain surface electric potential. PLoS Comput Biol 5(12):e1000609CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Einevoll GT, Pettersen KH, Devor A, Ulbert I, Halgren E, Dale AM (2007) Laminar population analysis: estimating firing rates and evoked synaptic activity from multielectrode recordings in rat barrel cortex. J Neurophysiol 97(3):2174–2190CrossRefPubMedGoogle Scholar
  15. 15.
    Zanos TP, Mineault PJ, Pack CC (2011) Removal of spurious correlations between spikes and local field potentials. J Neurophysiol 105(1):474–486CrossRefPubMedGoogle Scholar
  16. 16.
    Buzsaki G, Bickford RG, Ponomareff G, Thal LJ, Mandel R, Gage FH (1988) Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J Neurosci 8(11):4007–4026PubMedGoogle Scholar
  17. 17.
    Kornhuber HH, Becker W, Taumer R, Hoehne O, Iwase K (1969) Cerebral potentials accompanying voluntary movements in man: readiness potential and reafferent potentials. Electroencephalogr Clin Neurophysiol 26(4):439PubMedGoogle Scholar
  18. 18.
    Walter WG, Cooper R, Aldridge VJ, McCallum WC, Winter AL (1964) Contingent negative variation: an electric sign of sensorimotor association and expectancy in the human brain. Nature 203:380–384CrossRefPubMedGoogle Scholar
  19. 19.
    Hughes SW, Lorincz ML, Parri HR, Crunelli V (2011) Infraslow (<0.1 Hz) oscillations in thalamic relay nuclei basic mechanisms and significance to health and disease states. Prog Brain Res 193:145–162CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kang J, Jiang L, Goldman SA, Nedergaard M (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1(8):683–692CrossRefPubMedGoogle Scholar
  21. 21.
    Poskanzer KE, Yuste R (2011) Astrocytic regulation of cortical UP states. Proc Natl Acad Sci U S A 108(45):18453–18458CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Vanhatalo S, Palva JM, Holmes MD, Miller JW, Voipio J, Kaila K (2004) Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep. Proc Natl Acad Sci U S A 101(14):5053–5057CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Rasminsky M (1980) Ephaptic transmission between single nerve fibres in the spinal nerve roots of dystrophic mice. J Physiol 305:151–169CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Jefferys JG (1995) Nonsynaptic modulation of neuronal activity in the brain: electric currents and extracellular ions. Physiol Rev 75(4):689–723PubMedGoogle Scholar
  25. 25.
    McCormick DA, Contreras D (2001) On the cellular and network bases of epileptic seizures. Annu Rev Physiol 63:815–846CrossRefPubMedGoogle Scholar
  26. 26.
    Asano E, Juhasz C, Shah A, Muzik O, Chugani DC, Shah J, Sood S, Chugani HT (2005) Origin and propagation of epileptic spasms delineated on electrocorticography. Epilepsia 46(7):1086–1097CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hashiguchi K, Morioka T, Yoshida F, Miyagi Y, Nagata S, Sakata A, Sasaki T (2007) Correlation between scalp-recorded electroencephalographic and electrocorticographic activities during ictal period. Seizure 16(3):238–247CrossRefPubMedGoogle Scholar
  28. 28.
    Furue H, Katafuchi T, Yoshimura M (2007) In vivo patch-clamp technique. In: Walz W (ed) Patch-clamp analysis, vol 38. Humana Press, Totowa, NJ, pp 229–251CrossRefGoogle Scholar
  29. 29.
    Brunson DB (2008) Chapter 3 - Pharmacology of inhalation anesthetics. In: Fish RE, Brown MJ, Danneman PJ, Karas AZ (eds) Anesthesia and analgesia in laboratory animals, 2nd edn. Academic, San Diego, CA, pp 83–95CrossRefGoogle Scholar
  30. 30.
    Meyer RE, Fish RE (2008) Chapter 2 - Pharmacology of injectable anesthetics, sedatives, and tranquilizers. In: Fish RE, Brown MJ, Danneman PJ, Karas AZ (eds) Anesthesia and analgesia in laboratory animals, 2nd edn. Academic, San Diego, CA, pp 27–82Google Scholar
  31. 31.
    Ferron JF, Kroeger D, Chever O, Amzica F (2009) Cortical inhibition during burst suppression induced with isoflurane anesthesia. J Neurosci 29(31):9850–9860CrossRefPubMedGoogle Scholar
  32. 32.
    Kroeger D, Amzica F (2007) Hypersensitivity of the anesthesia-induced comatose brain. J Neurosci 27(39):10597–10607CrossRefPubMedGoogle Scholar
  33. 33.
    Lee AK, Epsztein J, Brecht M (2009) Head-anchored whole-cell recordings in freely moving rats. Nat Protoc 4(3):385–392CrossRefPubMedGoogle Scholar
  34. 34.
    Harvey CD, Collman F, Dombeck DA, Tank DW (2009) Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461(7266):941–946CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Holscher C, Schnee A, Dahmen H, Setia L, Mallot HA (2005) Rats are able to navigate in virtual environments. J Exp Biol 208(Pt 3):561–569CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Neuroscience DepartmentUniversity of PittsburghPittsburghUSA

Personalised recommendations