Advertisement

Electrophysiological and Visual Tags

  • Nicholas GrazianeEmail author
  • Yan Dong
Part of the Neuromethods book series (NM, volume 112)

Abstract

Just like we can identify friends based on physical characteristics (voice, appearance, etc.), so too can we identify synaptic proteins or neurons based on their electrophysiological characteristics. This chapter discusses different approaches to electrophysiologically identify specific synaptic receptors or specific neuronal types including examples in which these approaches have been implemented experimentally.

Key words

Calcium-permeable AMPARs GluN2B Dopamine neurons Capacitance Input resistance Resting membrane potential Fluorescent dyes Fluorescent tags pHluorins 

References

  1. 1.
    Cull-Candy S, Kelly L, Farrant M (2006) Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond. Curr Opin Neurobiol 16(3):288–297CrossRefPubMedGoogle Scholar
  2. 2.
    Hayashi Y, Shi SH, Esteban JA, Piccini A, Poncer JC, Malinow R (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287(5461):2262–2267CrossRefPubMedGoogle Scholar
  3. 3.
    Huang YH, Lin Y, Mu P, Lee BR, Brown TE, Wayman G, Marie H, Liu W, Yan Z, Sorg BA, Schluter OM, Zukin RS, Dong Y (2009) In vivo cocaine experience generates silent synapses. Neuron 63(1):40–47CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sasaki YF, Rothe T, Premkumar LS, Das S, Cui J, Talantova MV, Wong HK, Gong X, Chan SF, Zhang D, Nakanishi N, Sucher NJ, Lipton SA (2002) Characterization and comparison of the NR3A subunit of the NMDA receptor in recombinant systems and primary cortical neurons. J Neurophysiol 87(4):2052–2063CrossRefPubMedGoogle Scholar
  5. 5.
    Barria A, Malinow R (2005) NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron 48(2):289–301CrossRefPubMedGoogle Scholar
  6. 6.
    Chen BT, Bowers MS, Martin M, Hopf FW, Guillory AM, Carelli RM, Chou JK, Bonci A (2008) Cocaine but not natural reward self-administration nor passive cocaine infusion produces persistent LTP in the VTA. Neuron 59(2):288–297CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Margolis EB, Lock H, Hjelmstad GO, Fields HL (2006) The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons? J Physiol 577(Pt 3):907–924CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kawaguchi Y (1993) Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. J Neurosci 13(11):4908–4923PubMedGoogle Scholar
  9. 9.
    Taylor AL (2012) What we talk about when we talk about capacitance measured with the voltage-clamp step method. J Comput Neurosci 32(1):167–175CrossRefPubMedGoogle Scholar
  10. 10.
    Snapp E (2005) Design and use of fluorescent fusion proteins in cell biology. Curr Protoc Cell Biol Chapter 21: Unit 21.24Google Scholar
  11. 11.
    Shi SH, Hayashi Y, Petralia RS, Zaman SH, Wenthold RJ, Svoboda K, Malinow R (1999) Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284(5421):1811–1816CrossRefPubMedGoogle Scholar
  12. 12.
    Hanson DA, Ziegler SF (2004) Fusion of green fluorescent protein to the C-terminus of granulysin alters its intracellular localization in comparison to the native molecule. J Negat Results Biomed 3:2CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Makino H, Malinow R (2009) AMPA receptor incorporation into synapses during LTP: the role of lateral movement and exocytosis. Neuron 64(3):381–390CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Tsien RY (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19(11):2396–2404CrossRefPubMedGoogle Scholar
  15. 15.
    Williams DA, Fogarty KE, Tsien RY, Fay FS (1985) Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using Fura-2. Nature 318(6046):558–561CrossRefPubMedGoogle Scholar
  16. 16.
    Lacar B, Young SZ, Platel JC, Bordey A (2010) Imaging and recording subventricular zone progenitor cells in live tissue of postnatal mice. Front Neurosci 4:43PubMedPubMedCentralGoogle Scholar
  17. 17.
    Judkewitz B, Rizzi M, Kitamura K, Hausser M (2009) Targeted single-cell electroporation of mammalian neurons in vivo. Nat Protoc 4(6):862–869CrossRefPubMedGoogle Scholar
  18. 18.
    Kitamura K, Judkewitz B, Kano M, Denk W, Hausser M (2008) Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo. Nat Methods 5(1):61–67CrossRefPubMedGoogle Scholar
  19. 19.
    Nevian T, Helmchen F (2007) Calcium indicator loading of neurons using single-cell electroporation. Pflugers Arch 454(4):675–688CrossRefPubMedGoogle Scholar
  20. 20.
    Grienberger C, Konnerth A (2012) Imaging Calcium in Neurons. Neuron 73(5):862–885CrossRefPubMedGoogle Scholar
  21. 21.
    Connor JA, Razani-Boroujerdi S, Greenwood AC, Cormier RJ, Petrozzino JJ, Lin RC (1999) Reduced voltage-dependent Ca2+ signaling in CA1 neurons after brief ischemia in gerbils. J Neurophysiol 81(1):299–306PubMedGoogle Scholar
  22. 22.
    Garaschuk O, Milos RI, Konnerth A (2006) Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo. Nat Protoc 1(1):380–386CrossRefPubMedGoogle Scholar
  23. 23.
    Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci U S A 100(12):7319–7324CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Tsien RY (1981) A non-disruptive technique for loading calcium buffers and indicators into cells. Nature 290(5806):527–528CrossRefPubMedGoogle Scholar
  25. 25.
    Fatt P, Katz B (1950) Some observations on biological noise. Nature 166(4223):597–598CrossRefPubMedGoogle Scholar
  26. 26.
    Katz B (2003) Neural transmitter release: from quantal secretion to exocytosis and beyond. J Neurocytol 32(5-8):437–446CrossRefPubMedGoogle Scholar
  27. 27.
    Chung C, Barylko B, Leitz J, Liu X, Kavalali ET (2010) Acute dynamin inhibition dissects synaptic vesicle recycling pathways that drive spontaneous and evoked neurotransmission. J Neurosci 30(4):1363–1376CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Groemer TW, Klingauf J (2007) Synaptic vesicles recycling spontaneously and during activity belong to the same vesicle pool. Nat Neurosci 10(2):145–147CrossRefPubMedGoogle Scholar
  29. 29.
    Sara Y, Virmani T, Deak F, Liu X, Kavalali ET (2005) An isolated pool of vesicles recycles at rest and drives spontaneous neurotransmission. Neuron 45(4):563–573CrossRefPubMedGoogle Scholar
  30. 30.
    Kavalali ET, Jorgensen EM (2014) Visualizing presynaptic function. Nat Neurosci 17(1):10–16CrossRefPubMedGoogle Scholar
  31. 31.
    Murthy VN, Stevens CF (1998) Synaptic vesicles retain their identity through the endocytic cycle. Nature 392(6675):497–501CrossRefPubMedGoogle Scholar
  32. 32.
    Betz WJ, Bewick GS (1992) Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science 255(5041):200–203CrossRefPubMedGoogle Scholar
  33. 33.
    Denker A, Bethani I, Krohnert K, Korber C, Horstmann H, Wilhelm BG, Barysch SV, Kuner T, Neher E, Rizzoli SO (2011) A small pool of vesicles maintains synaptic activity in vivo. Proc Natl Acad Sci U S A 108(41):17177–17182CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Harata N, Pyle JL, Aravanis AM, Mozhayeva M, Kavalali ET, Tsien RW (2001) Limited numbers of recycling vesicles in small CNS nerve terminals: implications for neural signaling and vesicular cycling. Trends Neurosci 24(11):637–643CrossRefPubMedGoogle Scholar
  35. 35.
    Harata N, Ryan TA, Smith SJ, Buchanan J, Tsien RW (2001) Visualizing recycling synaptic vesicles in hippocampal neurons by FM 1-43 photoconversion. Proc Natl Acad Sci U S A 98(22):12748–12753CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Henkel AW, Lubke J, Betz WJ (1996) FM1-43 dye ultrastructural localization in and release from frog motor nerve terminals. Proc Natl Acad Sci U S A 93(5):1918–1923CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Marra V, Burden JJ, Thorpe JR, Smith IT, Smith SL, Hausser M, Branco T, Staras K (2012) A preferentially segregated recycling vesicle pool of limited size supports neurotransmission in native central synapses. Neuron 76(3):579–589CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Pyle JL, Kavalali ET, Piedras-Renteria ES, Tsien RW (2000) Rapid reuse of readily releasable pool vesicles at hippocampal synapses. Neuron 28(1):221–231CrossRefPubMedGoogle Scholar
  39. 39.
    Sara Y, Mozhayeva MG, Liu X, Kavalali ET (2002) Fast vesicle recycling supports neurotransmission during sustained stimulation at hippocampal synapses. J Neurosci 22(5):1608–1617PubMedGoogle Scholar
  40. 40.
    Schikorski T, Stevens CF (2001) Morphological correlates of functionally defined synaptic vesicle populations. Nat Neurosci 4(4):391–395CrossRefPubMedGoogle Scholar
  41. 41.
    Kay AR, Alfonso A, Alford S, Cline HT, Holgado AM, Sakmann B, Snitsarev VA, Stricker TP, Takahashi M, Wu LG (1999) Imaging synaptic activity in intact brain and slices with FM1-43 in C. elegans, lamprey, and rat. Neuron 24(4):809–817CrossRefPubMedGoogle Scholar
  42. 42.
    Pyle JL, Kavalali ET, Choi S, Tsien RW (1999) Visualization of synaptic activity in hippocampal slices with FM1-43 enabled by fluorescence quenching. Neuron 24(4):803–808CrossRefPubMedGoogle Scholar
  43. 43.
    Wu Y, Yeh FL, Mao F, Chapman ER (2009) Biophysical characterization of styryl dye-membrane interactions. Biophys J 97(1):101–109CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Zenisek D, Steyer JA, Feldman ME, Almers W (2002) A membrane marker leaves synaptic vesicles in milliseconds after exocytosis in retinal bipolar cells. Neuron 35(6):1085–1097CrossRefPubMedGoogle Scholar
  45. 45.
    Kavalali ET, Klingauf J, Tsien RW (1999) Properties of fast endocytosis at hippocampal synapses. Philos Trans R Soc Lond B Biol Sci 354(1381):337–346CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Klingauf J, Kavalali ET, Tsien RW (1998) Kinetics and regulation of fast endocytosis at hippocampal synapses. Nature 394(6693):581–585CrossRefPubMedGoogle Scholar
  47. 47.
    Richards DA, Guatimosim C, Betz WJ (2000) Two endocytic recycling routes selectively fill two vesicle pools in frog motor nerve terminals. Neuron 27(3):551–559CrossRefPubMedGoogle Scholar
  48. 48.
    Richards DA, Guatimosim C, Rizzoli SO, Betz WJ (2003) Synaptic vesicle pools at the frog neuromuscular junction. Neuron 39(3):529–541CrossRefPubMedGoogle Scholar
  49. 49.
    Miesenbock G (2012) Synapto-pHluorins: genetically encoded reporters of synaptic transmission. Cold Spring Harb Protoc 2012(2):213–217CrossRefPubMedGoogle Scholar
  50. 50.
    Atluri PP, Ryan TA (2006) The kinetics of synaptic vesicle reacidification at hippocampal nerve terminals. J Neurosci 26(8):2313–2320CrossRefPubMedGoogle Scholar
  51. 51.
    Granseth B, Odermatt B, Royle SJ, Lagnado L (2006) Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51(6):773–786CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Neuroscience DepartmentUniversity of PittsburghPittsburghUSA

Personalised recommendations