Kinetics of Synaptic Current

  • Nicholas GrazianeEmail author
  • Yan DongEmail author
Part of the Neuromethods book series (NM, volume 112)


Current kinetics takes into account three key components of receptor function. They include an open or activated state, a deactivated state, and a desensitized state (Fig. 1) As the ligand binds to the receptor, a conformational change takes place allowing pore formation and ion permeability, defining an activated state. The deactivated state refers to a receptor transitioning from a bound to an unbound agonist state with decreasing ionic permeability as the channel closes. This process occurs as the agonist concentration becomes zero. Finally, a desensitized state refers to a reduced response to an agonist often due to prolonged agonist exposure (i.e., the receptor is in a non-conducting state despite agonist being bound to the receptor). Desensitization can be altered by neurotransmitter clearance from the synaptic cleft via diffusion, degradation, or reuptake through transporters expressed on neuronal or glial cells. Prolonged exposure to neurotransmission may induce desensitization of receptors, while rapid removal of the neurotransmitter from the synaptic cleft may reduce desensitization.

Key words

Non-NMDARs NMDARs Nicotinic acetylcholine receptors 5-HT3Rs Purinergic P2X receptors GABAA receptors Glycine receptors 


  1. 1.
    Armstrong CM (1981) Sodium channels and gating currents. Physiol Rev 61(3):644–683PubMedGoogle Scholar
  2. 2.
    Barberis A, Mozrzymas JW, Ortinski PI, Vicini S (2007) Desensitization and binding properties determine distinct alpha1beta2gamma2 and alpha3beta2gamma2 GABA(A) receptor-channel kinetic behavior. Eur J Neurosci 25(9):2726–2740PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Bettler B, Boulter J, Hermans-Borgmeyer I, O’Shea-Greenfield A, Deneris ES, Moll C, Borgmeyer U, Hollmann M, Heinemann S (1990) Cloning of a novel glutamate receptor subunit, GluR5: expression in the nervous system during development. Neuron 5(5):583–595PubMedCrossRefGoogle Scholar
  4. 4.
    Bettler B, Egebjerg J, Sharma G, Pecht G, Hermans-Borgmeyer I, Moll C, Stevens CF, Heinemann S (1992) Cloning of a putative glutamate receptor: a low affinity kainate-binding subunit. Neuron 8(2):257–265PubMedCrossRefGoogle Scholar
  5. 5.
    Boulter J, Hollmann M, O’Shea-Greenfield A, Hartley M, Deneris E, Maron C, Heinemann S (1990) Molecular cloning and functional expression of glutamate receptor subunit genes. Science 249(4972):1033–1037PubMedCrossRefGoogle Scholar
  6. 6.
    Egebjerg J, Bettler B, Hermans-Borgmeyer I, Heinemann S (1991) Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not AMPA. Nature 351(6329):745–748PubMedCrossRefGoogle Scholar
  7. 7.
    Herb A, Burnashev N, Werner P, Sakmann B, Wisden W, Seeburg PH (1992) The KA-2 subunit of excitatory amino acid receptors shows widespread expression in brain and forms ion channels with distantly related subunits. Neuron 8(4):775–785PubMedCrossRefGoogle Scholar
  8. 8.
    Keinanen K, Wisden W, Sommer B, Werner P, Herb A, Verdoorn TA, Sakmann B, Seeburg PH (1990) A family of AMPA-selective glutamate receptors. Science 249(4968):556–560PubMedCrossRefGoogle Scholar
  9. 9.
    Morita T, Sakimura K, Kushiya E, Yamazaki M, Meguro H, Araki K, Abe T, Mori KJ, Mishina M (1992) Cloning and functional expression of a cDNA encoding the mouse beta 2 subunit of the kainate-selective glutamate receptor channel. Brain Res Mol Brain Res 14(1–2):143–146PubMedCrossRefGoogle Scholar
  10. 10.
    Sakimura K, Morita T, Kushiya E, Mishina M (1992) Primary structure and expression of the gamma 2 subunit of the glutamate receptor channel selective for kainate. Neuron 8(2):267–274PubMedCrossRefGoogle Scholar
  11. 11.
    Sommer B, Burnashev N, Verdoorn TA, Keinanen K, Sakmann B, Seeburg PH (1992) A glutamate receptor channel with high affinity for domoate and kainate. EMBO J 11(4):1651–1656PubMedPubMedCentralGoogle Scholar
  12. 12.
    Werner P, Voigt M, Keinanen K, Wisden W, Seeburg PH (1991) Cloning of a putative high-affinity kainate receptor expressed predominantly in hippocampal CA3 cells. Nature 351(6329):742–744PubMedCrossRefGoogle Scholar
  13. 13.
    Hollmann M, Hartley M, Heinemann S (1991) Ca2+ permeability of KA-AMPA--gated glutamate receptor channels depends on subunit composition. Science 252(5007):851–853PubMedCrossRefGoogle Scholar
  14. 14.
    Hume RI, Dingledine R, Heinemann SF (1991) Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 253(5023):1028–1031PubMedCrossRefGoogle Scholar
  15. 15.
    Sommer B, Keinanen K, Verdoorn TA, Wisden W, Burnashev N, Herb A, Kohler M, Takagi T, Sakmann B, Seeburg PH (1990) Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249(4976):1580–1585PubMedCrossRefGoogle Scholar
  16. 16.
    Edmonds B, Gibb AJ, Colquhoun D (1995) Mechanisms of activation of glutamate receptors and the time course of excitatory synaptic currents. Annu Rev Physiol 57:495–519PubMedCrossRefGoogle Scholar
  17. 17.
    Kiskin NI, Krishtal OA, Tsyndrenko A (1986) Excitatory amino acid receptors in hippocampal neurons: kainate fails to desensitize them. Neurosci Lett 63(3):225–230PubMedCrossRefGoogle Scholar
  18. 18.
    Llano I, Marty A, Armstrong CM, Konnerth A (1991) Synaptic- and agonist-induced excitatory currents of Purkinje cells in rat cerebellar slices. J Physiol 434:183–213PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Nelson PG, Pun RY, Westbrook GL (1986) Synaptic excitation in cultures of mouse spinal cord neurones: receptor pharmacology and behaviour of synaptic currents. J Physiol 372:169–190PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Patneau DK, Mayer ML (1990) Structure-activity relationships for amino acid transmitter candidates acting at N-methyl-D-aspartate and quisqualate receptors. J Neurosci 10(7):2385–2399PubMedGoogle Scholar
  21. 21.
    Silver RA, Traynelis SF, Cull-Candy SG (1992) Rapid-time-course miniature and evoked excitatory currents at cerebellar synapses in situ. Nature 355(6356):163–166PubMedCrossRefGoogle Scholar
  22. 22.
    Trussell LO, Fischbach GD (1989) Glutamate receptor desensitization and its role in synaptic transmission. Neuron 3(2):209–218PubMedCrossRefGoogle Scholar
  23. 23.
    Colquhoun D, Jonas P, Sakmann B (1992) Action of brief pulses of glutamate on AMPA/kainate receptors in patches from different neurones of rat hippocampal slices. J Physiol 458:261–287PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Hestrin S (1992) Activation and desensitization of glutamate-activated channels mediating fast excitatory synaptic currents in the visual cortex. Neuron 9(5):991–999PubMedCrossRefGoogle Scholar
  25. 25.
    Hestrin S (1993) Different glutamate receptor channels mediate fast excitatory synaptic currents in inhibitory and excitatory cortical neurons. Neuron 11(6):1083–1091PubMedCrossRefGoogle Scholar
  26. 26.
    Raman IM, Trussell LO (1992) The kinetics of the response to glutamate and kainate in neurons of the avian cochlear nucleus. Neuron 9(1):173–186PubMedCrossRefGoogle Scholar
  27. 27.
    Tang CM, Shi QY, Katchman A, Lynch G (1991) Modulation of the time course of fast EPSCs and glutamate channel kinetics by aniracetam. Science 254(5029):288–290PubMedCrossRefGoogle Scholar
  28. 28.
    Veruki ML, Morkve SH, Hartveit E (2003) Functional properties of spontaneous EPSCs and non-NMDA receptors in rod amacrine (AII) cells in the rat retina. J Physiol 549(Pt 3):759–774PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Sasaki YF, Rothe T, Premkumar LS, Das S, Cui J, Talantova MV, Wong HK, Gong X, Chan SF, Zhang D, Nakanishi N, Sucher NJ, Lipton SA (2002) Characterization and comparison of the NR3A subunit of the NMDA receptor in recombinant systems and primary cortical neurons. J Neurophysiol 87(4):2052–2063PubMedCrossRefGoogle Scholar
  30. 30.
    Kleckner NW, Dingledine R (1988) Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 241(4867):835–837PubMedCrossRefGoogle Scholar
  31. 31.
    Schneggenburger R, Zhou Z, Konnerth A, Neher E (1993) Fractional contribution of calcium to the cation current through glutamate receptor channels. Neuron 11(1):133–143PubMedCrossRefGoogle Scholar
  32. 32.
    Sah P, Hestrin S, Nicoll RA (1990) Properties of excitatory postsynaptic currents recorded in vitro from rat hippocampal interneurones. J Physiol 430:605–616PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Jahr CE, Stevens CF (1990) Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J Neurosci 10(9):3178–3182PubMedGoogle Scholar
  34. 34.
    Hestrin S, Sah P, Nicoll RA (1990) Mechanisms generating the time course of dual component excitatory synaptic currents recorded in hippocampal slices. Neuron 5(3):247–253PubMedCrossRefGoogle Scholar
  35. 35.
    Jahr CE (1992) High probability opening of NMDA receptor channels by L-glutamate. Science 255(5043):470–472PubMedCrossRefGoogle Scholar
  36. 36.
    Lester RA, Clements JD, Westbrook GL, Jahr CE (1990) Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature 346(6284):565–567PubMedCrossRefGoogle Scholar
  37. 37.
    Charpantier E, Barneoud P, Moser P, Besnard F, Sgard F (1998) Nicotinic acetylcholine subunit mRNA expression in dopaminergic neurons of the rat substantia nigra and ventral tegmental area. Neuroreport 9(13):3097–3101PubMedCrossRefGoogle Scholar
  38. 38.
    Cimino M, Marini P, Fornasari D, Cattabeni F, Clementi F (1992) Distribution of nicotinic receptors in cynomolgus monkey brain and ganglia: localization of alpha 3 subunit mRNA, alpha-bungarotoxin and nicotine binding sites. Neuroscience 51(1):77–86PubMedCrossRefGoogle Scholar
  39. 39.
    Clarke PB, Schwartz RD, Paul SM, Pert CB, Pert A (1985) Nicotinic binding in rat brain: autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I]-alpha-bungarotoxin. J Neurosci 5(5):1307–1315PubMedGoogle Scholar
  40. 40.
    Seguela P, Wadiche J, Dineley-Miller K, Dani JA, Patrick JW (1993) Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J Neurosci 13(2):596–604PubMedGoogle Scholar
  41. 41.
    Wada E, Wada K, Boulter J, Deneris E, Heinemann S, Patrick J, Swanson LW (1989) Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. J Comp Neurol 284(2):314–335PubMedCrossRefGoogle Scholar
  42. 42.
    Mulle C, Vidal C, Benoit P, Changeux JP (1991) Existence of different subtypes of nicotinic acetylcholine receptors in the rat habenulo-interpeduncular system. J Neurosci 11(8):2588–2597PubMedGoogle Scholar
  43. 43.
    Kuba K, Tanaka E, Kumamoto E, Minota S (1989) Patch clamp experiments on nicotinic acetylcholine receptor-ion channels in bullfrog sympathetic ganglion cells. Pflugers Arch 414(2):105–112PubMedCrossRefGoogle Scholar
  44. 44.
    Mathie A, Cull-Candy SG, Colquhoun D (1987) Single-channel and whole-cell currents evoked by acetylcholine in dissociated sympathetic neurons of the rat. Proc R Soc Lond B Biol Sci 232(1267):239–248PubMedCrossRefGoogle Scholar
  45. 45.
    Moss BL, Schuetze SM, Role LW (1989) Functional properties and developmental regulation of nicotinic acetylcholine receptors on embryonic chicken sympathetic neurons. Neuron 3(5):597–607PubMedCrossRefGoogle Scholar
  46. 46.
    Sargent PB (1993) The diversity of neuronal nicotinic acetylcholine receptors. Annu Rev Neurosci 16:403–443PubMedCrossRefGoogle Scholar
  47. 47.
    Schofield GG, Weight FF, Adler M (1985) Single acetylcholine channel currents in sympathetic neurons. Brain Res 342(1):200–203PubMedCrossRefGoogle Scholar
  48. 48.
    Dani JA (2001) Overview of nicotinic receptors and their roles in the central nervous system. Biol Psychiatry 49(3):166–174PubMedCrossRefGoogle Scholar
  49. 49.
    Quick MW, Lester RA (2002) Desensitization of neuronal nicotinic receptors. J Neurobiol 53(4):457–478PubMedCrossRefGoogle Scholar
  50. 50.
    Castro NG, Albuquerque EX (1993) Brief-lifetime, fast-inactivating ion channels account for the alpha-bungarotoxin-sensitive nicotinic response in hippocampal neurons. Neurosci Lett 164(1–2):137–140PubMedCrossRefGoogle Scholar
  51. 51.
    Albuquerque EX, Alkondon M, Pereira EF, Castro NG, Schrattenholz A, Barbosa CT, Bonfante-Cabarcas R, Aracava Y, Eisenberg HM, Maelicke A (1997) Properties of neuronal nicotinic acetylcholine receptors: pharmacological characterization and modulation of synaptic function. J Pharmacol Exp Ther 280(3):1117–1136PubMedGoogle Scholar
  52. 52.
    Alkondon M, Albuquerque EX (1993) Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons. I. Pharmacological and functional evidence for distinct structural subtypes. J Pharmacol Exp Ther 265(3):1455–1473PubMedGoogle Scholar
  53. 53.
    Castro NG, Albuquerque EX (1995) alpha-Bungarotoxin-sensitive hippocampal nicotinic receptor channel has a high calcium permeability. Biophys J 68(2):516–524PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Papke RL (1993) The kinetic properties of neuronal nicotinic receptors: genetic basis of functional diversity. Prog Neurobiol 41(4):509–531PubMedCrossRefGoogle Scholar
  55. 55.
    Maricq AV, Peterson AS, Brake AJ, Myers RM, Julius D (1991) Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science 254(5030):432–437PubMedCrossRefGoogle Scholar
  56. 56.
    Eisele JL, Bertrand S, Galzi JL, Devillers-Thiery A, Changeux JP, Bertrand D (1993) Chimaeric nicotinic-serotonergic receptor combines distinct ligand binding and channel specificities. Nature 366(6454):479–483PubMedCrossRefGoogle Scholar
  57. 57.
    Neijt HC, te Duits IJ, Vijverberg HP (1988) Pharmacological characterization of serotonin 5-HT3 receptor-mediated electrical response in cultured mouse neuroblastoma cells. Neuropharmacology 27(3):301–307PubMedCrossRefGoogle Scholar
  58. 58.
    van Hooft JA, Vijverberg HP (1996) Selection of distinct conformational states of the 5-HT3 receptor by full and partial agonists. Br J Pharmacol 117(5):839–846PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Yakel JL, Lagrutta A, Adelman JP, North RA (1993) Single amino acid substitution affects desensitization of the 5-hydroxytryptamine type 3 receptor expressed in Xenopus oocytes. Proc Natl Acad Sci U S A 90(11):5030–5033PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Blandina P, Goldfarb J, Craddock-Royal B, Green JP (1989) Release of endogenous dopamine by stimulation of 5-hydroxytryptamine3 receptors in rat striatum. J Pharmacol Exp Ther 251(3):803–809PubMedGoogle Scholar
  61. 61.
    Lummis SC (2012) 5-HT(3) receptors. J Biol Chem 287(48):40239–40245PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Miquel MC, Emerit MB, Nosjean A, Simon A, Rumajogee P, Brisorgueil MJ, Doucet E, Hamon M, Verge D (2002) Differential subcellular localization of the 5-HT3-As receptor subunit in the rat central nervous system. Eur J Neurosci 15(3):449–457PubMedCrossRefGoogle Scholar
  63. 63.
    Thompson AJ, Lummis SC (2006) 5-HT3 receptors. Curr Pharm Des 12(28):3615–3630PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Chameau P, van Hooft JA (2006) Serotonin 5-HT(3) receptors in the central nervous system. Cell Tissue Res 326(2):573–581PubMedCrossRefGoogle Scholar
  65. 65.
    Thompson AJ, Lummis SC (2007) The 5-HT3 receptor as a therapeutic target. Expert Opin Ther Targets 11(4):527–540PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Derkach V, Surprenant A, North RA (1989) 5-HT3 receptors are membrane ion channels. Nature 339(6227):706–709PubMedCrossRefGoogle Scholar
  67. 67.
    Yang J (1990) Ion permeation through 5-hydroxytryptamine-gated channels in neuroblastoma N18 cells. J Gen Physiol 96(6):1177–1198PubMedCrossRefGoogle Scholar
  68. 68.
    Virginio C, North RA, Surprenant A (1998) Calcium permeability and block at homomeric and heteromeric P2X2 and P2X3 receptors, and P2X receptors in rat nodose neurones. J Physiol 510(Pt 1):27–35PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Nicke A, Baumert HG, Rettinger J, Eichele A, Lambrecht G, Mutschler E, Schmalzing G (1998) P2X1 and P2X3 receptors form stable trimers: a novel structural motif of ligand-gated ion channels. EMBO J 17(11):3016–3028PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Stoop R, Thomas S, Rassendren F, Kawashima E, Buell G, Surprenant A, North RA (1999) Contribution of individual subunits to the multimeric P2X(2) receptor: estimates based on methanethiosulfonate block at T336C. Mol Pharmacol 56(5):973–981PubMedGoogle Scholar
  71. 71.
    Torres GE, Egan TM, Voigt MM (1999) Hetero-oligomeric assembly of P2X receptor subunits. Specificities exist with regard to possible partners. J Biol Chem 274(10):6653–6659PubMedCrossRefGoogle Scholar
  72. 72.
    Burnstock G, Knight GE (2004) Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol 240:31–304PubMedCrossRefGoogle Scholar
  73. 73.
    Collo G, Neidhart S, Kawashima E, Kosco-Vilbois M, North RA, Buell G (1997) Tissue distribution of the P2X7 receptor. Neuropharmacology 36(9):1277–1283PubMedCrossRefGoogle Scholar
  74. 74.
    Collo G, North RA, Kawashima E, Merlo-Pich E, Neidhart S, Surprenant A, Buell G (1996) Cloning OF P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels. J Neurosci 16(8):2495–2507PubMedGoogle Scholar
  75. 75.
    Khakh BS (2001) Molecular physiology of P2X receptors and ATP signalling at synapses. Nat Rev Neurosci 2(3):165–174PubMedCrossRefGoogle Scholar
  76. 76.
    Khakh BS, North RA (2006) P2X receptors as cell-surface ATP sensors in health and disease. Nature 442(7102):527–532PubMedCrossRefGoogle Scholar
  77. 77.
    Rubio ME, Soto F (2001) Distinct Localization of P2X receptors at excitatory postsynaptic specializations. J Neurosci 21(2):641–653PubMedGoogle Scholar
  78. 78.
    Edwards FA, Gibb AJ, Colquhoun D (1992) ATP receptor-mediated synaptic currents in the central nervous system. Nature 359(6391):144–147PubMedCrossRefGoogle Scholar
  79. 79.
    Shigetomi E, Kato F (2004) Action potential-independent release of glutamate by Ca2+ entry through presynaptic P2X receptors elicits postsynaptic firing in the brainstem autonomic network. J Neurosci 24(12):3125–3135PubMedCrossRefGoogle Scholar
  80. 80.
    North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82(4):1013–1067PubMedCrossRefGoogle Scholar
  81. 81.
    Masin M, Kerschensteiner D, Dumke K, Rubio ME, Soto F (2006) Fe65 interacts with P2X2 subunits at excitatory synapses and modulates receptor function. J Biol Chem 281(7):4100–4108PubMedCrossRefGoogle Scholar
  82. 82.
    Zhang M, Zhong H, Vollmer C, Nurse CA (2000) Co-release of ATP and ACh mediates hypoxic signalling at rat carotid body chemoreceptors. J Physiol 525(Pt 1):143–158PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Jo YH, Role LW (2002) Coordinate release of ATP and GABA at in vitro synapses of lateral hypothalamic neurons. J Neurosci 22(12):4794–4804PubMedGoogle Scholar
  84. 84.
    Pankratov Y, Lalo U, Verkhratsky A, North RA (2007) Quantal release of ATP in mouse cortex. J Gen Physiol 129(3):257–265PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Stuber GD, Hnasko TS, Britt JP, Edwards RH, Bonci A (2010) Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. J Neurosci 30(24):8229–8233PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Hirasawa H, Betensky RA, Raviola E (2012) Corelease of dopamine and GABA by a retinal dopaminergic neuron. J Neurosci 32(38):13281–13291PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Finger TE, Danilova V, Barrows J, Bartel DL, Vigers AJ, Stone L, Hellekant G, Kinnamon SC (2005) ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 310(5753):1495–1499PubMedCrossRefGoogle Scholar
  88. 88.
    Olsen RW, Sieghart W (2008) International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev 60(3):243–260PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Gonzalez-Burgos G, Lewis DA (2008) GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia. Schizophr Bull 34(5):944–961PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Farrant M, Nusser Z (2005) Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci 6(3):215–229PubMedCrossRefGoogle Scholar
  91. 91.
    Jones MV, Westbrook GL (1997) Shaping of IPSCs by endogenous calcineurin activity. J Neurosci 17(20):7626–7633PubMedGoogle Scholar
  92. 92.
    Jones MV, Westbrook GL (1995) Desensitized states prolong GABAA channel responses to brief agonist pulses. Neuron 15(1):181–191PubMedCrossRefGoogle Scholar
  93. 93.
    Maconochie DJ, Zempel JM, Steinbach JH (1994) How quickly can GABAA receptors open? Neuron 12(1):61–71PubMedCrossRefGoogle Scholar
  94. 94.
    Chen L, Wang H, Vicini S, Olsen RW (2000) The gamma-aminobutyric acid type A (GABAA) receptor-associated protein (GABARAP) promotes GABAA receptor clustering and modulates the channel kinetics. Proc Natl Acad Sci U S A 97(21):11557–11562PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Overstreet LS, Jones MV, Westbrook GL (2000) Slow desensitization regulates the availability of synaptic GABA(A) receptors. J Neurosci 20(21):7914–7921PubMedGoogle Scholar
  96. 96.
    Tia S, Wang JF, Kotchabhakdi N, Vicini S (1996) Distinct deactivation and desensitization kinetics of recombinant GABAA receptors. Neuropharmacology 35(9–10):1375–1382PubMedCrossRefGoogle Scholar
  97. 97.
    Verdoorn TA, Draguhn A, Ymer S, Seeburg PH, Sakmann B (1990) Functional properties of recombinant rat GABAA receptors depend upon subunit composition. Neuron 4(6):919–928PubMedCrossRefGoogle Scholar
  98. 98.
    Grudzinska J, Schemm R, Haeger S, Nicke A, Schmalzing G, Betz H, Laube B (2005) The beta subunit determines the ligand binding properties of synaptic glycine receptors. Neuron 45(5):727–739PubMedCrossRefGoogle Scholar
  99. 99.
    Katz B, Miledi R (1973) The binding of acetylcholine to receptors and its removal from the synaptic cleft. J Physiol 231(3):549–574PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Laube B (2002) Potentiation of inhibitory glycinergic neurotransmission by Zn2+: a synergistic interplay between presynaptic P2X2 and postsynaptic glycine receptors. Eur J Neurosci 16(6):1025–1036PubMedCrossRefGoogle Scholar
  101. 101.
    Takahashi T, Momiyama A, Hirai K, Hishinuma F, Akagi H (1992) Functional correlation of fetal and adult forms of glycine receptors with developmental changes in inhibitory synaptic receptor channels. Neuron 9(6):1155–1161PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Neuroscience DepartmentUniversity of PittsburghPittsburghUSA

Personalised recommendations