Advertisement

Pre vs. Post synaptic Effect

  • Nicholas GrazianeEmail author
  • Yan Dong
Part of the Neuromethods book series (NM, volume 112)

Abstract

A commonly pursued goal in studying synaptic plasticity is to determine whether synaptic inputs undergo presynaptic and/or postsynaptic alterations following a stimulus and how these alterations affect the firing properties of the innervated neuron. In this chapter we continue to discuss approaches that can be implemented to test presynaptic mechanisms of plasticity. In addition, we explain modifications that can occur in the postsynaptic cell affecting the intrinsic membrane excitability. The intrinsic membrane excitability contributes to the firing properties of a neuron, and is mediated by voltage-gated channels as well as synaptic inputs. In this chapter, we discuss the voltage-gated channels that regulate the intrinsic membrane excitability on the dendrite explaining how these channels contribute to EPSP summation at the soma and back-propagating action potentials. We conclude this chapter with approaches that can be used to measure the intrinsic membrane excitability.

Key words

Neurotransmitter release Intrinsic membrane excitability Sodium channels Calcium channels Potassium channels Hyperpolarization-activated cation channels EPSP-to-spike plasticity 

References

  1. 1.
    Del Castillo J, Katz B (1954) Quantal components of the end-plate potential. J Physiol 124(3):560–573CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Malinow R, Tsien RW (1990) Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices. Nature 346(6280):177–180CrossRefPubMedGoogle Scholar
  3. 3.
    Bekkers JM, Stevens CF (1990) Presynaptic mechanism for long-term potentiation in the hippocampus. Nature 346(6286):724–729CrossRefPubMedGoogle Scholar
  4. 4.
    Clements JD, Silver RA (2000) Unveiling synaptic plasticity: a new graphical and analytical approach. Trends Neurosci 23(3):105–113CrossRefPubMedGoogle Scholar
  5. 5.
    Silver RA (2003) Estimation of nonuniform quantal parameters with multiple-probability fluctuation analysis: theory, application and limitations. J Neurosci Methods 130(2):127–141CrossRefPubMedGoogle Scholar
  6. 6.
    Durand GM, Kovalchuk Y, Konnerth A (1996) Long-term potentiation and functional synapse induction in developing hippocampus. Nature 381(6577):71–75CrossRefPubMedGoogle Scholar
  7. 7.
    Isaac JT, Nicoll RA, Malenka RC (1995) Evidence for silent synapses: implications for the expression of LTP. Neuron 15(2):427–434CrossRefPubMedGoogle Scholar
  8. 8.
    Liao D, Hessler NA, Malinow R (1995) Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 375(6530):400–404CrossRefPubMedGoogle Scholar
  9. 9.
    Abraham WC (2008) Metaplasticity: tuning synapses and networks for plasticity. Nat Rev Neurosci 9(5):387CrossRefPubMedGoogle Scholar
  10. 10.
    Alkon DL (1984) Calcium-mediated reduction of ionic currents: a biophysical memory trace. Science 226(4678):1037–1045CrossRefPubMedGoogle Scholar
  11. 11.
    Alkon DL, Lederhendler I, Shoukimas JJ (1982) Primary changes of membrane currents during retention of associative learning. Science 215(4533):693–695CrossRefPubMedGoogle Scholar
  12. 12.
    Zhao ML, Wu CF (1997) Alterations in frequency coding and activity dependence of excitability in cultured neurons of Drosophila memory mutants. J Neurosci 17(6):2187–2199PubMedGoogle Scholar
  13. 13.
    Daoudal G, Debanne D (2003) Long-term plasticity of intrinsic excitability: learning rules and mechanisms. Learn Mem 10(6):456–465CrossRefPubMedGoogle Scholar
  14. 14.
    Huang YH, Schluter OM, Dong Y (2011) Cocaine-induced homeostatic regulation and dysregulation of nucleus accumbens neurons. Behav Brain Res 216(1):9–18CrossRefPubMedGoogle Scholar
  15. 15.
    Chen WR, Midtgaard J, Shepherd GM (1997) Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells. Science 278(5337):463–467CrossRefPubMedGoogle Scholar
  16. 16.
    Golding NL, Spruston N (1998) Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron 21(5):1189–1200CrossRefPubMedGoogle Scholar
  17. 17.
    Martina M, Vida I, Jonas P (2000) Distal initiation and active propagation of action potentials in interneuron dendrites. Science 287(5451):295–300CrossRefPubMedGoogle Scholar
  18. 18.
    Schwindt P, Crill W (1999) Mechanisms underlying burst and regular spiking evoked by dendritic depolarization in layer 5 cortical pyramidal neurons. J Neurophysiol 81(3):1341–1354PubMedGoogle Scholar
  19. 19.
    Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367(6458):69–72CrossRefPubMedGoogle Scholar
  20. 20.
    Reyes A (2001) Influence of dendritic conductances on the input-output properties of neurons. Annu Rev Neurosci 24:653–675CrossRefPubMedGoogle Scholar
  21. 21.
    Colbert CM, Magee JC, Hoffman DA, Johnston D (1997) Slow recovery from inactivation of Na + channels underlies the activity-dependent attenuation of dendritic action potentials in hippocampal CA1 pyramidal neurons. J Neurosci 17(17):6512–6521PubMedGoogle Scholar
  22. 22.
    Jung HY, Mickus T, Spruston N (1997) Prolonged sodium channel inactivation contributes to dendritic action potential attenuation in hippocampal pyramidal neurons. J Neurosci 17(17):6639–6646PubMedGoogle Scholar
  23. 23.
    Magee JC, Christofi G, Miyakawa H, Christie B, Lasser-Ross N, Johnston D (1995) Subthreshold synaptic activation of voltage-gated Ca2+ channels mediates a localized Ca2+ influx into the dendrites of hippocampal pyramidal neurons. J Neurophysiol 74(3):1335–1342PubMedGoogle Scholar
  24. 24.
    Mittmann T, Linton SM, Schwindt P, Crill W (1997) Evidence for persistent Na + current in apical dendrites of rat neocortical neurons from imaging of Na + -sensitive dye. J Neurophysiol 78(2):1188–1192PubMedGoogle Scholar
  25. 25.
    Schwindt PC, Crill WE (1997) Local and propagated dendritic action potentials evoked by glutamate iontophoresis on rat neocortical pyramidal neurons. J Neurophysiol 77(5):2466–2483PubMedGoogle Scholar
  26. 26.
    Schwindt PC, Crill WE (1997) Modification of current transmitted from apical dendrite to soma by blockade of voltage- and Ca2 + -dependent conductances in rat neocortical pyramidal neurons. J Neurophysiol 78(1):187–198PubMedGoogle Scholar
  27. 27.
    Golding NL, Jung HY, Mickus T, Spruston N (1999) Dendritic calcium spike initiation and repolarization are controlled by distinct potassium channel subtypes in CA1 pyramidal neurons. J Neurosci 19(20):8789–8798PubMedGoogle Scholar
  28. 28.
    Carlin KP, Jones KE, Jiang Z, Jordan LM, Brownstone RM (2000) Dendritic L-type calcium currents in mouse spinal motoneurons: implications for bistability. Eur J Neurosci 12(5):1635–1646CrossRefPubMedGoogle Scholar
  29. 29.
    Hounsgaard J, Kiehn O (1993) Calcium spikes and calcium plateaux evoked by differential polarization in dendrites of turtle motoneurones in vitro. J Physiol 468:245–259CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lee RH, Heckman CJ (1996) Influence of voltage-sensitive dendritic conductances on bistable firing and effective synaptic current in cat spinal motoneurons in vivo. J Neurophysiol 76(3):2107–2110PubMedGoogle Scholar
  31. 31.
    Booth V, Rinzel J, Kiehn O (1997) Compartmental model of vertebrate motoneurons for Ca2 + -dependent spiking and plateau potentials under pharmacological treatment. J Neurophysiol 78(6):3371–3385PubMedGoogle Scholar
  32. 32.
    Bennett MV, Hille B, Obara S (1970) Voltage threshold in excitable cells depends on stimulus form. J Neurophysiol 33(5):585–594PubMedGoogle Scholar
  33. 33.
    Kiehn O, Eken T (1998) Functional role of plateau potentials in vertebrate motor neurons. Curr Opin Neurobiol 8(6):746–752CrossRefPubMedGoogle Scholar
  34. 34.
    Magee JC, Johnston D (1995) Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268(5208):301–304CrossRefPubMedGoogle Scholar
  35. 35.
    Bekkers JM (2000) Distribution and activation of voltage-gated potassium channels in cell-attached and outside-out patches from large layer 5 cortical pyramidal neurons of the rat. J Physiol 525(Pt 3):611–620CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Andreasen M, Lambert JD (1995) Regenerative properties of pyramidal cell dendrites in area CA1 of the rat hippocampus. J Physiol 483(Pt 2):421–441CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387(6636):869–875CrossRefPubMedGoogle Scholar
  38. 38.
    Johnston D, Hoffman DA, Magee JC, Poolos NP, Watanabe S, Colbert CM, Migliore M (2000) Dendritic potassium channels in hippocampal pyramidal neurons. J Physiol 525(Pt 1):75–81CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Korngreen A, Sakmann B (2000) Voltage-gated K+ channels in layer 5 neocortical pyramidal neurones from young rats: subtypes and gradients. J Physiol 525(Pt 3):621–639CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Magee JC (1998) Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J Neurosci 18(19):7613–7624PubMedGoogle Scholar
  41. 41.
    Williams SR, Stuart GJ (2000) Site independence of EPSP time course is mediated by dendritic I(h) in neocortical pyramidal neurons. J Neurophysiol 83(5):3177–3182PubMedGoogle Scholar
  42. 42.
    Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Daoudal G, Hanada Y, Debanne D (2002) Bidirectional plasticity of excitatory postsynaptic potential (EPSP)-spike coupling in CA1 hippocampal pyramidal neurons. Proc Natl Acad Sci U S A 99(22):14512–14517CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ishikawa M, Mu P, Moyer JT, Wolf JA, Quock RM, Davies NM, Hu XT, Schluter OM, Dong Y (2009) Homeostatic synapse-driven membrane plasticity in nucleus accumbens neurons. J Neurosci 29(18):5820–5831CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Howell D (2010) Fundamental statistics for the behavioral sciences. Cengage Learning, Belmont, CAGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Neuroscience DepartmentUniversity of PittsburghPittsburghUSA

Personalised recommendations