Long-Term Measurements

  • Nicholas GrazianeEmail author
  • Yan Dong
Part of the Neuromethods book series (NM, volume 112)


Long-term measurements in slice electrophysiology typically constitute long-term potentiation (LTP) and long-term depression (LTD). These measurements can last 1–2 h, requiring minimal baseline noise and easy detection of activated synaptic receptors. This can be relatively easy to achieve in field recordings, but can be challenging in whole-cell configurations. In this chapter, we discuss the concepts behind LTP and LTD as well as the approaches that the beginning electrophysiologist can use in order to complete these long-term measurements. We finish with potential technical issues to consider during experimentation as well as suggestions that may increase the likelihood of successful recordings.

Key words

Long-term potentiation Long-term depression 


  1. 1.
    Foeller E, Feldman DE (2004) Synaptic basis for developmental plasticity in somatosensory cortex. Curr Opin Neurobiol 14(1):89–95CrossRefPubMedGoogle Scholar
  2. 2.
    Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44(1):5–21CrossRefPubMedGoogle Scholar
  3. 3.
    Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Benke TA, Luthi A, Isaac JT, Collingridge GL (1998) Modulation of AMPA receptor unitary conductance by synaptic activity. Nature 393(6687):793–797CrossRefPubMedGoogle Scholar
  5. 5.
    Bredt DS, Nicoll RA (2003) AMPA receptor trafficking at excitatory synapses. Neuron 40(2):361–379CrossRefPubMedGoogle Scholar
  6. 6.
    Kauer JA, Malenka RC, Nicoll RA (1988) NMDA application potentiates synaptic transmission in the hippocampus. Nature 334(6179):250–252CrossRefPubMedGoogle Scholar
  7. 7.
    Kauer JA, Malenka RC, Nicoll RA (1988) A persistent postsynaptic modification mediates long-term potentiation in the hippocampus. Neuron 1(10):911–917CrossRefPubMedGoogle Scholar
  8. 8.
    Lee HK, Barbarosie M, Kameyama K, Bear MF, Huganir RL (2000) Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405(6789):955–959CrossRefPubMedGoogle Scholar
  9. 9.
    Malenka RC, Nicoll RA (1999) Long-term potentiation--a decade of progress? Science 285(5435):1870–1874CrossRefPubMedGoogle Scholar
  10. 10.
    Malinow R, Malenka RC (2002) AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25:103–126CrossRefPubMedGoogle Scholar
  11. 11.
    Shi SH, Hayashi Y, Petralia RS, Zaman SH, Wenthold RJ, Svoboda K, Malinow R (1999) Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284(5421):1811–1816CrossRefPubMedGoogle Scholar
  12. 12.
    Soderling TR, Derkach VA (2000) Postsynaptic protein phosphorylation and LTP. Trends Neurosci 23(2):75–80CrossRefPubMedGoogle Scholar
  13. 13.
    Song I, Huganir RL (2002) Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci 25(11):578–588CrossRefPubMedGoogle Scholar
  14. 14.
    Abraham WC, Williams JM (2003) Properties and mechanisms of LTP maintenance. Neuroscientist 9(6):463–474CrossRefPubMedGoogle Scholar
  15. 15.
    Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84(1):87–136CrossRefPubMedGoogle Scholar
  16. 16.
    Pittenger C, Kandel ER (2003) In search of general mechanisms for long-lasting plasticity: aplysia and the hippocampus. Philos Trans R Soc Lond B Biol Sci 358(1432):757–763CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Breustedt J, Vogt KE, Miller RJ, Nicoll RA, Schmitz D (2003) Alpha1E-containing Ca2+ channels are involved in synaptic plasticity. Proc Natl Acad Sci U S A 100(21):12450–12455CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Castillo PE, Weisskopf MG, Nicoll RA (1994) The role of Ca2+ channels in hippocampal mossy fiber synaptic transmission and long-term potentiation. Neuron 12(2):261–269CrossRefPubMedGoogle Scholar
  19. 19.
    Dietrich D, Kirschstein T, Kukley M, Pereverzev A, von der Brelie C, Schneider T, Beck H (2003) Functional specialization of presynaptic Cav2.3 Ca2+ channels. Neuron 39(3):483–496CrossRefPubMedGoogle Scholar
  20. 20.
    Nicoll RA, Schmitz D (2005) Synaptic plasticity at hippocampal mossy fibre synapses. Nat Rev Neurosci 6(11):863–876CrossRefPubMedGoogle Scholar
  21. 21.
    Huang YY, Kandel ER, Varshavsky L, Brandon EP, Qi M, Idzerda RL, McKnight GS, Bourtchouladze R (1995) A genetic test of the effects of mutations in PKA on mossy fiber LTP and its relation to spatial and contextual learning. Cell 83(7):1211–1222CrossRefPubMedGoogle Scholar
  22. 22.
    Huang YY, Li XC, Kandel ER (1994) cAMP contributes to mossy fiber LTP by initiating both a covalently mediated early phase and macromolecular synthesis-dependent late phase. Cell 79(1):69–79CrossRefPubMedGoogle Scholar
  23. 23.
    Weisskopf MG, Castillo PE, Zalutsky RA, Nicoll RA (1994) Mediation of hippocampal mossy fiber long-term potentiation by cyclic AMP. Science 265(5180):1878–1882CrossRefPubMedGoogle Scholar
  24. 24.
    Castillo PE, Janz R, Sudhof TC, Tzounopoulos T, Malenka RC, Nicoll RA (1997) Rab3A is essential for mossy fibre long-term potentiation in the hippocampus. Nature 388(6642):590–593CrossRefPubMedGoogle Scholar
  25. 25.
    Castillo PE, Schoch S, Schmitz F, Sudhof TC, Malenka RC (2002) RIM1alpha is required for presynaptic long-term potentiation. Nature 415(6869):327–330CrossRefPubMedGoogle Scholar
  26. 26.
    Wang Y, Okamoto M, Schmitz F, Hofmann K, Sudhof TC (1997) Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature 388(6642):593–598CrossRefPubMedGoogle Scholar
  27. 27.
    Graziane NM, Polter AM, Briand LA, Pierce RC, Kauer JA (2013) Kappa opioid receptors regulate stress-induced cocaine seeking and synaptic plasticity. Neuron 77(5):942–954CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Nugent FS, Penick EC, Kauer JA (2007) Opioids block long-term potentiation of inhibitory synapses. Nature 446(7139):1086–1090CrossRefPubMedGoogle Scholar
  29. 29.
    Nugent FS, Niehaus JL, Kauer JA (2009) PKG and PKA signaling in LTP at GABAergic synapses. Neuropsychopharmacology 34(7):1829–1842CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kauer JA, Malenka RC (2007) Synaptic plasticity and addiction. Nat Rev Neurosci 8(11):844–858CrossRefPubMedGoogle Scholar
  31. 31.
    Carroll RC, Beattie EC, von Zastrow M, Malenka RC (2001) Role of AMPA receptor endocytosis in synaptic plasticity. Nat Rev Neurosci 2(5):315–324CrossRefPubMedGoogle Scholar
  32. 32.
    Chevaleyre V, Heifets BD, Kaeser PS, Sudhof TC, Castillo PE (2007) Endocannabinoid-mediated long-term plasticity requires cAMP/PKA signaling and RIM1alpha. Neuron 54(5):801–812CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Chevaleyre V, Takahashi KA, Castillo PE (2006) Endocannabinoid-mediated synaptic plasticity in the CNS. Annu Rev Neurosci 29:37–76CrossRefPubMedGoogle Scholar
  34. 34.
    Lin JY (2011) A user’s guide to channelrhodopsin variants: features, limitations and future developments. Exp Physiol 96(1):19–25CrossRefPubMedGoogle Scholar
  35. 35.
    Lin JY, Lin MZ, Steinbach P, Tsien RY (2009) Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys J 96(5):1803–1814CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lu W, Man H, Ju W, Trimble WS, MacDonald JF, Wang YT (2001) Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron 29(1):243–254CrossRefPubMedGoogle Scholar
  37. 37.
    Otmakhov N, Khibnik L, Otmakhova N, Carpenter S, Riahi S, Asrican B, Lisman J (2004) Forskolin-induced LTP in the CA1 hippocampal region is NMDA receptor dependent. J Neurophysiol 91:1955CrossRefPubMedGoogle Scholar
  38. 38.
    Stewart MG, Medvedev NI, Popov VI, Schoepfer R, Davies HA, Murphy K, Dallerac GM, Kraev IV, Rodriguez JJ (2005) Chemically induced long-term potentiation increases the number of perforated and complex postsynaptic densities but does not alter dendritic spine volume in CA1 of adult mouse hippocampal slices. Eur J Neurosci 21(12):3368–3378CrossRefPubMedGoogle Scholar
  39. 39.
    Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18(24):10464–10472PubMedGoogle Scholar
  40. 40.
    Gustafsson B, Wigstrom H, Abraham WC, Huang YY (1987) Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials. J Neurosci 7(3):774–780PubMedGoogle Scholar
  41. 41.
    Haas JS, Nowotny T, Abarbanel HD (2006) Spike-timing-dependent plasticity of inhibitory synapses in the entorhinal cortex. J Neurophysiol 96(6):3305–3313CrossRefPubMedGoogle Scholar
  42. 42.
    Levy WB, Steward O (1983) Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience 8(4):791–797CrossRefPubMedGoogle Scholar
  43. 43.
    Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275(5297):213–215CrossRefPubMedGoogle Scholar
  44. 44.
    McNaughton BL, Douglas RM, Goddard GV (1978) Synaptic enhancement in fascia dentata: cooperativity among coactive afferents. Brain Res 157(2):277–293CrossRefPubMedGoogle Scholar
  45. 45.
    Bell CC, Han VZ, Sugawara Y, Grant K (1997) Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387(6630):278–281CrossRefPubMedGoogle Scholar
  46. 46.
    Chevaleyre V, Castillo PE (2004) Endocannabinoid-mediated metaplasticity in the hippocampus. Neuron 43(6):871–881CrossRefPubMedGoogle Scholar
  47. 47.
    Gerdeman GL, Ronesi J, Lovinger DM (2002) Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat Neurosci 5(5):446–451PubMedGoogle Scholar
  48. 48.
    Kemp N, McQueen J, Faulkes S, Bashir ZI (2000) Different forms of LTD in the CA1 region of the hippocampus: role of age and stimulus protocol. Eur J Neurosci 12(1):360–366CrossRefPubMedGoogle Scholar
  49. 49.
    Lee HK, Takamiya K, Han JS, Man H, Kim CH, Rumbaugh G, Yu S, Ding L, He C, Petralia RS, Wenthold RJ, Gallagher M, Huganir RL (2003) Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell 112(5):631–643CrossRefPubMedGoogle Scholar
  50. 50.
    Thiels E, Xie X, Yeckel MF, Barrionuevo G, Berger TW (1996) NMDA receptor-dependent LTD in different subfields of hippocampus in vivo and in vitro. Hippocampus 6(1):43–51CrossRefPubMedGoogle Scholar
  51. 51.
    Lee HK, Kameyama K, Huganir RL, Bear MF (1998) NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron 21(5):1151–1162CrossRefPubMedGoogle Scholar
  52. 52.
    Morishita W, Connor JH, Xia H, Quinlan EM, Shenolikar S, Malenka RC (2001) Regulation of synaptic strength by protein phosphatase 1. Neuron 32(6):1133–1148CrossRefPubMedGoogle Scholar
  53. 53.
    Feldman DE (2012) The spike-timing dependence of plasticity. Neuron 75(4):556–571CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Clements JD, Silver RA (2000) Unveiling synaptic plasticity: a new graphical and analytical approach. Trends Neurosci 23(3):105–113CrossRefPubMedGoogle Scholar
  55. 55.
    Silver RA (2003) Estimation of nonuniform quantal parameters with multiple-probability fluctuation analysis: theory, application and limitations. J Neurosci Methods 130(2):127–141CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Neuroscience DepartmentUniversity of PittsburghPittsburghUSA

Personalised recommendations