Skip to main content

Long-Term Measurements

  • Protocol
  • 2524 Accesses

Part of the book series: Neuromethods ((NM,volume 112))

Abstract

Long-term measurements in slice electrophysiology typically constitute long-term potentiation (LTP) and long-term depression (LTD). These measurements can last 1–2 h, requiring minimal baseline noise and easy detection of activated synaptic receptors. This can be relatively easy to achieve in field recordings, but can be challenging in whole-cell configurations. In this chapter, we discuss the concepts behind LTP and LTD as well as the approaches that the beginning electrophysiologist can use in order to complete these long-term measurements. We finish with potential technical issues to consider during experimentation as well as suggestions that may increase the likelihood of successful recordings.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Foeller E, Feldman DE (2004) Synaptic basis for developmental plasticity in somatosensory cortex. Curr Opin Neurobiol 14(1):89–95

    Article  CAS  PubMed  Google Scholar 

  2. Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44(1):5–21

    Article  CAS  PubMed  Google Scholar 

  3. Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Benke TA, Luthi A, Isaac JT, Collingridge GL (1998) Modulation of AMPA receptor unitary conductance by synaptic activity. Nature 393(6687):793–797

    Article  CAS  PubMed  Google Scholar 

  5. Bredt DS, Nicoll RA (2003) AMPA receptor trafficking at excitatory synapses. Neuron 40(2):361–379

    Article  CAS  PubMed  Google Scholar 

  6. Kauer JA, Malenka RC, Nicoll RA (1988) NMDA application potentiates synaptic transmission in the hippocampus. Nature 334(6179):250–252

    Article  CAS  PubMed  Google Scholar 

  7. Kauer JA, Malenka RC, Nicoll RA (1988) A persistent postsynaptic modification mediates long-term potentiation in the hippocampus. Neuron 1(10):911–917

    Article  CAS  PubMed  Google Scholar 

  8. Lee HK, Barbarosie M, Kameyama K, Bear MF, Huganir RL (2000) Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405(6789):955–959

    Article  CAS  PubMed  Google Scholar 

  9. Malenka RC, Nicoll RA (1999) Long-term potentiation--a decade of progress? Science 285(5435):1870–1874

    Article  CAS  PubMed  Google Scholar 

  10. Malinow R, Malenka RC (2002) AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25:103–126

    Article  CAS  PubMed  Google Scholar 

  11. Shi SH, Hayashi Y, Petralia RS, Zaman SH, Wenthold RJ, Svoboda K, Malinow R (1999) Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284(5421):1811–1816

    Article  CAS  PubMed  Google Scholar 

  12. Soderling TR, Derkach VA (2000) Postsynaptic protein phosphorylation and LTP. Trends Neurosci 23(2):75–80

    Article  CAS  PubMed  Google Scholar 

  13. Song I, Huganir RL (2002) Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci 25(11):578–588

    Article  CAS  PubMed  Google Scholar 

  14. Abraham WC, Williams JM (2003) Properties and mechanisms of LTP maintenance. Neuroscientist 9(6):463–474

    Article  CAS  PubMed  Google Scholar 

  15. Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84(1):87–136

    Article  CAS  PubMed  Google Scholar 

  16. Pittenger C, Kandel ER (2003) In search of general mechanisms for long-lasting plasticity: aplysia and the hippocampus. Philos Trans R Soc Lond B Biol Sci 358(1432):757–763

    Article  PubMed  PubMed Central  Google Scholar 

  17. Breustedt J, Vogt KE, Miller RJ, Nicoll RA, Schmitz D (2003) Alpha1E-containing Ca2+ channels are involved in synaptic plasticity. Proc Natl Acad Sci U S A 100(21):12450–12455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Castillo PE, Weisskopf MG, Nicoll RA (1994) The role of Ca2+ channels in hippocampal mossy fiber synaptic transmission and long-term potentiation. Neuron 12(2):261–269

    Article  CAS  PubMed  Google Scholar 

  19. Dietrich D, Kirschstein T, Kukley M, Pereverzev A, von der Brelie C, Schneider T, Beck H (2003) Functional specialization of presynaptic Cav2.3 Ca2+ channels. Neuron 39(3):483–496

    Article  CAS  PubMed  Google Scholar 

  20. Nicoll RA, Schmitz D (2005) Synaptic plasticity at hippocampal mossy fibre synapses. Nat Rev Neurosci 6(11):863–876

    Article  CAS  PubMed  Google Scholar 

  21. Huang YY, Kandel ER, Varshavsky L, Brandon EP, Qi M, Idzerda RL, McKnight GS, Bourtchouladze R (1995) A genetic test of the effects of mutations in PKA on mossy fiber LTP and its relation to spatial and contextual learning. Cell 83(7):1211–1222

    Article  CAS  PubMed  Google Scholar 

  22. Huang YY, Li XC, Kandel ER (1994) cAMP contributes to mossy fiber LTP by initiating both a covalently mediated early phase and macromolecular synthesis-dependent late phase. Cell 79(1):69–79

    Article  CAS  PubMed  Google Scholar 

  23. Weisskopf MG, Castillo PE, Zalutsky RA, Nicoll RA (1994) Mediation of hippocampal mossy fiber long-term potentiation by cyclic AMP. Science 265(5180):1878–1882

    Article  CAS  PubMed  Google Scholar 

  24. Castillo PE, Janz R, Sudhof TC, Tzounopoulos T, Malenka RC, Nicoll RA (1997) Rab3A is essential for mossy fibre long-term potentiation in the hippocampus. Nature 388(6642):590–593

    Article  CAS  PubMed  Google Scholar 

  25. Castillo PE, Schoch S, Schmitz F, Sudhof TC, Malenka RC (2002) RIM1alpha is required for presynaptic long-term potentiation. Nature 415(6869):327–330

    Article  CAS  PubMed  Google Scholar 

  26. Wang Y, Okamoto M, Schmitz F, Hofmann K, Sudhof TC (1997) Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature 388(6642):593–598

    Article  CAS  PubMed  Google Scholar 

  27. Graziane NM, Polter AM, Briand LA, Pierce RC, Kauer JA (2013) Kappa opioid receptors regulate stress-induced cocaine seeking and synaptic plasticity. Neuron 77(5):942–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nugent FS, Penick EC, Kauer JA (2007) Opioids block long-term potentiation of inhibitory synapses. Nature 446(7139):1086–1090

    Article  CAS  PubMed  Google Scholar 

  29. Nugent FS, Niehaus JL, Kauer JA (2009) PKG and PKA signaling in LTP at GABAergic synapses. Neuropsychopharmacology 34(7):1829–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kauer JA, Malenka RC (2007) Synaptic plasticity and addiction. Nat Rev Neurosci 8(11):844–858

    Article  CAS  PubMed  Google Scholar 

  31. Carroll RC, Beattie EC, von Zastrow M, Malenka RC (2001) Role of AMPA receptor endocytosis in synaptic plasticity. Nat Rev Neurosci 2(5):315–324

    Article  CAS  PubMed  Google Scholar 

  32. Chevaleyre V, Heifets BD, Kaeser PS, Sudhof TC, Castillo PE (2007) Endocannabinoid-mediated long-term plasticity requires cAMP/PKA signaling and RIM1alpha. Neuron 54(5):801–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chevaleyre V, Takahashi KA, Castillo PE (2006) Endocannabinoid-mediated synaptic plasticity in the CNS. Annu Rev Neurosci 29:37–76

    Article  CAS  PubMed  Google Scholar 

  34. Lin JY (2011) A user’s guide to channelrhodopsin variants: features, limitations and future developments. Exp Physiol 96(1):19–25

    Article  PubMed  Google Scholar 

  35. Lin JY, Lin MZ, Steinbach P, Tsien RY (2009) Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys J 96(5):1803–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lu W, Man H, Ju W, Trimble WS, MacDonald JF, Wang YT (2001) Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron 29(1):243–254

    Article  CAS  PubMed  Google Scholar 

  37. Otmakhov N, Khibnik L, Otmakhova N, Carpenter S, Riahi S, Asrican B, Lisman J (2004) Forskolin-induced LTP in the CA1 hippocampal region is NMDA receptor dependent. J Neurophysiol 91:1955

    Article  CAS  PubMed  Google Scholar 

  38. Stewart MG, Medvedev NI, Popov VI, Schoepfer R, Davies HA, Murphy K, Dallerac GM, Kraev IV, Rodriguez JJ (2005) Chemically induced long-term potentiation increases the number of perforated and complex postsynaptic densities but does not alter dendritic spine volume in CA1 of adult mouse hippocampal slices. Eur J Neurosci 21(12):3368–3378

    Article  CAS  PubMed  Google Scholar 

  39. Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18(24):10464–10472

    CAS  PubMed  Google Scholar 

  40. Gustafsson B, Wigstrom H, Abraham WC, Huang YY (1987) Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials. J Neurosci 7(3):774–780

    CAS  PubMed  Google Scholar 

  41. Haas JS, Nowotny T, Abarbanel HD (2006) Spike-timing-dependent plasticity of inhibitory synapses in the entorhinal cortex. J Neurophysiol 96(6):3305–3313

    Article  PubMed  Google Scholar 

  42. Levy WB, Steward O (1983) Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience 8(4):791–797

    Article  CAS  PubMed  Google Scholar 

  43. Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275(5297):213–215

    Article  CAS  PubMed  Google Scholar 

  44. McNaughton BL, Douglas RM, Goddard GV (1978) Synaptic enhancement in fascia dentata: cooperativity among coactive afferents. Brain Res 157(2):277–293

    Article  CAS  PubMed  Google Scholar 

  45. Bell CC, Han VZ, Sugawara Y, Grant K (1997) Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387(6630):278–281

    Article  CAS  PubMed  Google Scholar 

  46. Chevaleyre V, Castillo PE (2004) Endocannabinoid-mediated metaplasticity in the hippocampus. Neuron 43(6):871–881

    Article  CAS  PubMed  Google Scholar 

  47. Gerdeman GL, Ronesi J, Lovinger DM (2002) Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat Neurosci 5(5):446–451

    CAS  PubMed  Google Scholar 

  48. Kemp N, McQueen J, Faulkes S, Bashir ZI (2000) Different forms of LTD in the CA1 region of the hippocampus: role of age and stimulus protocol. Eur J Neurosci 12(1):360–366

    Article  CAS  PubMed  Google Scholar 

  49. Lee HK, Takamiya K, Han JS, Man H, Kim CH, Rumbaugh G, Yu S, Ding L, He C, Petralia RS, Wenthold RJ, Gallagher M, Huganir RL (2003) Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell 112(5):631–643

    Article  CAS  PubMed  Google Scholar 

  50. Thiels E, Xie X, Yeckel MF, Barrionuevo G, Berger TW (1996) NMDA receptor-dependent LTD in different subfields of hippocampus in vivo and in vitro. Hippocampus 6(1):43–51

    Article  CAS  PubMed  Google Scholar 

  51. Lee HK, Kameyama K, Huganir RL, Bear MF (1998) NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron 21(5):1151–1162

    Article  CAS  PubMed  Google Scholar 

  52. Morishita W, Connor JH, Xia H, Quinlan EM, Shenolikar S, Malenka RC (2001) Regulation of synaptic strength by protein phosphatase 1. Neuron 32(6):1133–1148

    Article  CAS  PubMed  Google Scholar 

  53. Feldman DE (2012) The spike-timing dependence of plasticity. Neuron 75(4):556–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Clements JD, Silver RA (2000) Unveiling synaptic plasticity: a new graphical and analytical approach. Trends Neurosci 23(3):105–113

    Article  CAS  PubMed  Google Scholar 

  55. Silver RA (2003) Estimation of nonuniform quantal parameters with multiple-probability fluctuation analysis: theory, application and limitations. J Neurosci Methods 130(2):127–141

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Graziane .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Graziane, N., Dong, Y. (2016). Long-Term Measurements. In: Electrophysiological Analysis of Synaptic Transmission. Neuromethods, vol 112. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3274-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3274-0_12

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3273-3

  • Online ISBN: 978-1-4939-3274-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics